{"title":"使用BERT预训练的大规模自动ICD编码","authors":"Zachariah Zhang, Jingshu Liu, N. Razavian","doi":"10.18653/v1/2020.clinicalnlp-1.3","DOIUrl":null,"url":null,"abstract":"ICD coding is the task of classifying and cod-ing all diagnoses, symptoms and proceduresassociated with a patient’s visit. The process isoften manual, extremely time-consuming andexpensive for hospitals as clinical interactionsare usually recorded in free text medical notes.In this paper, we propose a machine learningmodel, BERT-XML, for large scale automatedICD coding of EHR notes, utilizing recentlydeveloped unsupervised pretraining that haveachieved state of the art performance on a va-riety of NLP tasks. We train a BERT modelfrom scratch on EHR notes, learning with vo-cabulary better suited for EHR tasks and thusoutperform off-the-shelf models. We furtheradapt the BERT architecture for ICD codingwith multi-label attention. We demonstratethe effectiveness of BERT-based models on thelarge scale ICD code classification task usingmillions of EHR notes to predict thousands ofunique codes.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"BERT-XML: Large Scale Automated ICD Coding Using BERT Pretraining\",\"authors\":\"Zachariah Zhang, Jingshu Liu, N. Razavian\",\"doi\":\"10.18653/v1/2020.clinicalnlp-1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ICD coding is the task of classifying and cod-ing all diagnoses, symptoms and proceduresassociated with a patient’s visit. The process isoften manual, extremely time-consuming andexpensive for hospitals as clinical interactionsare usually recorded in free text medical notes.In this paper, we propose a machine learningmodel, BERT-XML, for large scale automatedICD coding of EHR notes, utilizing recentlydeveloped unsupervised pretraining that haveachieved state of the art performance on a va-riety of NLP tasks. We train a BERT modelfrom scratch on EHR notes, learning with vo-cabulary better suited for EHR tasks and thusoutperform off-the-shelf models. We furtheradapt the BERT architecture for ICD codingwith multi-label attention. We demonstratethe effectiveness of BERT-based models on thelarge scale ICD code classification task usingmillions of EHR notes to predict thousands ofunique codes.\",\"PeriodicalId\":216954,\"journal\":{\"name\":\"Clinical Natural Language Processing Workshop\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Natural Language Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.clinicalnlp-1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.clinicalnlp-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BERT-XML: Large Scale Automated ICD Coding Using BERT Pretraining
ICD coding is the task of classifying and cod-ing all diagnoses, symptoms and proceduresassociated with a patient’s visit. The process isoften manual, extremely time-consuming andexpensive for hospitals as clinical interactionsare usually recorded in free text medical notes.In this paper, we propose a machine learningmodel, BERT-XML, for large scale automatedICD coding of EHR notes, utilizing recentlydeveloped unsupervised pretraining that haveachieved state of the art performance on a va-riety of NLP tasks. We train a BERT modelfrom scratch on EHR notes, learning with vo-cabulary better suited for EHR tasks and thusoutperform off-the-shelf models. We furtheradapt the BERT architecture for ICD codingwith multi-label attention. We demonstratethe effectiveness of BERT-based models on thelarge scale ICD code classification task usingmillions of EHR notes to predict thousands ofunique codes.