结合任务和运动规划使用策略改进与路径积分

Dominik Urbaniak, Alejandro Agostini, Dongheui Lee
{"title":"结合任务和运动规划使用策略改进与路径积分","authors":"Dominik Urbaniak, Alejandro Agostini, Dongheui Lee","doi":"10.1109/HUMANOIDS47582.2021.9555684","DOIUrl":null,"url":null,"abstract":"Task and motion planning deals with complex tasks that require a robot to automatically define and execute multi-step sequences of actions in cluttered scenarios. In this context, a linear motion is often not sufficient to approach a target object since collisions of the gripper with other objects or the target object might occur. Thus, motion planners should be able to generate collision-free trajectories for every particular configuration of obstacles for grounding the symbolic actions of the task plan. Current approaches either search for feasible motions offline using computationally expensive trial-and-error processes on physically realistic simulations or learn a set of motion parameters for particular object configuration spaces with little generalization. This work proposes an appealing alternative by efficiently generating trajectories for the collision-free execution of symbolic actions in variable scenarios without the need of intensive offline simulations. Our approach combines the benefit of learning from demonstration, to quickly generate an initial set of motion parameters for each symbolic action, with policy improvement with path integrals, to diversify this initial set of parameters to cope with different obstacle configurations. We show how the improved flexibility is achieved after a few minutes of training and successfully solves tasks requiring different sequences of picking and placing actions in variable configurations of obstacles.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining Task and Motion Planning using Policy Improvement with Path Integrals\",\"authors\":\"Dominik Urbaniak, Alejandro Agostini, Dongheui Lee\",\"doi\":\"10.1109/HUMANOIDS47582.2021.9555684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task and motion planning deals with complex tasks that require a robot to automatically define and execute multi-step sequences of actions in cluttered scenarios. In this context, a linear motion is often not sufficient to approach a target object since collisions of the gripper with other objects or the target object might occur. Thus, motion planners should be able to generate collision-free trajectories for every particular configuration of obstacles for grounding the symbolic actions of the task plan. Current approaches either search for feasible motions offline using computationally expensive trial-and-error processes on physically realistic simulations or learn a set of motion parameters for particular object configuration spaces with little generalization. This work proposes an appealing alternative by efficiently generating trajectories for the collision-free execution of symbolic actions in variable scenarios without the need of intensive offline simulations. Our approach combines the benefit of learning from demonstration, to quickly generate an initial set of motion parameters for each symbolic action, with policy improvement with path integrals, to diversify this initial set of parameters to cope with different obstacle configurations. We show how the improved flexibility is achieved after a few minutes of training and successfully solves tasks requiring different sequences of picking and placing actions in variable configurations of obstacles.\",\"PeriodicalId\":320510,\"journal\":{\"name\":\"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS47582.2021.9555684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

任务和运动规划处理复杂的任务,这些任务需要机器人在混乱的场景中自动定义和执行多步骤的动作序列。在这种情况下,线性运动通常不足以接近目标物体,因为抓手可能会与其他物体或目标物体发生碰撞。因此,运动规划者应该能够为每一种特殊的障碍物配置生成无碰撞轨迹,以使任务计划的象征性动作接地。目前的方法要么在物理逼真的模拟中使用计算昂贵的试错过程来离线搜索可行的运动,要么在很少泛化的情况下学习一组特定物体构型空间的运动参数。这项工作提出了一个有吸引力的替代方案,即在不需要密集的离线模拟的情况下,在可变场景中有效地生成无碰撞执行符号动作的轨迹。我们的方法结合了从演示中学习的优点,为每个符号动作快速生成初始运动参数集,并通过路径积分改进策略,使初始参数集多样化,以应对不同的障碍配置。我们展示了如何在几分钟的训练后实现改进的灵活性,并成功地解决了需要在不同的障碍物配置中选择和放置动作的不同序列的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Task and Motion Planning using Policy Improvement with Path Integrals
Task and motion planning deals with complex tasks that require a robot to automatically define and execute multi-step sequences of actions in cluttered scenarios. In this context, a linear motion is often not sufficient to approach a target object since collisions of the gripper with other objects or the target object might occur. Thus, motion planners should be able to generate collision-free trajectories for every particular configuration of obstacles for grounding the symbolic actions of the task plan. Current approaches either search for feasible motions offline using computationally expensive trial-and-error processes on physically realistic simulations or learn a set of motion parameters for particular object configuration spaces with little generalization. This work proposes an appealing alternative by efficiently generating trajectories for the collision-free execution of symbolic actions in variable scenarios without the need of intensive offline simulations. Our approach combines the benefit of learning from demonstration, to quickly generate an initial set of motion parameters for each symbolic action, with policy improvement with path integrals, to diversify this initial set of parameters to cope with different obstacle configurations. We show how the improved flexibility is achieved after a few minutes of training and successfully solves tasks requiring different sequences of picking and placing actions in variable configurations of obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信