聚类对词聚类降维的意义

Toshinori Deguchi, Sin-Yeong Seo, Naohiro Ishii
{"title":"聚类对词聚类降维的意义","authors":"Toshinori Deguchi, Sin-Yeong Seo, Naohiro Ishii","doi":"10.1109/IIAIAAI55812.2022.00072","DOIUrl":null,"url":null,"abstract":"In text mining, Latent Semantic Analysis (LSA) is the popular method to reduce the dimension of document vectors. Since LSA produces a set of topics by statistical information, the meaning of each topic is not clear.We proposed a method to reduce the dimension by clustering the words in the documents. This method produces a set of clusters of words instead of topics. Using Word2vec to vectorize the words, the mean vector of the cluster is calculated, which shows the meaning of the cluster.In this paper, we show the dimensionality reduction and the meaning of the generated clusters by word cloud, on document classification problem with a subset of BBC Dataset.","PeriodicalId":156230,"journal":{"name":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meaning of the Clusters on Dimensionality Reduction by Word Clustering\",\"authors\":\"Toshinori Deguchi, Sin-Yeong Seo, Naohiro Ishii\",\"doi\":\"10.1109/IIAIAAI55812.2022.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In text mining, Latent Semantic Analysis (LSA) is the popular method to reduce the dimension of document vectors. Since LSA produces a set of topics by statistical information, the meaning of each topic is not clear.We proposed a method to reduce the dimension by clustering the words in the documents. This method produces a set of clusters of words instead of topics. Using Word2vec to vectorize the words, the mean vector of the cluster is calculated, which shows the meaning of the cluster.In this paper, we show the dimensionality reduction and the meaning of the generated clusters by word cloud, on document classification problem with a subset of BBC Dataset.\",\"PeriodicalId\":156230,\"journal\":{\"name\":\"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAIAAI55812.2022.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAIAAI55812.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文本挖掘中,潜在语义分析(LSA)是一种常用的降低文档向量维数的方法。由于LSA是根据统计信息产生一组主题,因此每个主题的含义并不明确。我们提出了一种通过聚类文档中的单词来降维的方法。这种方法产生一组单词而不是主题。使用Word2vec对单词进行矢量化,计算聚类的平均向量,表示聚类的含义。在本文中,我们展示了用词云对BBC数据集子集的文档分类问题进行降维和生成的聚类的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meaning of the Clusters on Dimensionality Reduction by Word Clustering
In text mining, Latent Semantic Analysis (LSA) is the popular method to reduce the dimension of document vectors. Since LSA produces a set of topics by statistical information, the meaning of each topic is not clear.We proposed a method to reduce the dimension by clustering the words in the documents. This method produces a set of clusters of words instead of topics. Using Word2vec to vectorize the words, the mean vector of the cluster is calculated, which shows the meaning of the cluster.In this paper, we show the dimensionality reduction and the meaning of the generated clusters by word cloud, on document classification problem with a subset of BBC Dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信