Y. P. Yeshwanth, T. P. Vara Prasad, Vivek Mudadla, Pavan, S. Rekha
{"title":"超低电压,低功耗有源rc滤波器在90纳米CMOS技术","authors":"Y. P. Yeshwanth, T. P. Vara Prasad, Vivek Mudadla, Pavan, S. Rekha","doi":"10.1109/DISCOVER47552.2019.9007958","DOIUrl":null,"url":null,"abstract":"In this work, an ultra low voltage, second order low pass active-RC filter is designed in 90 nm CMOS process. A bulk-driven transconductor and a feed-forward compensated operational transconductance amplifier (OTA) are used as building blocks of the filter. Operating with a supply voltage of 0.5 V, filter exhibits a low pass Butterworth response with a cutoff frequency of 1 MHz. A mathematical model of the filter is developed using descriptor state-space equations for optimizing the filter response. The designed filter consumes a power as less as 91.99 μW with a figure of merit (FoM) of 3.39 fJ/pole.","PeriodicalId":274260,"journal":{"name":"2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra low voltage, low power active-RC filter in 90 nm CMOS technology\",\"authors\":\"Y. P. Yeshwanth, T. P. Vara Prasad, Vivek Mudadla, Pavan, S. Rekha\",\"doi\":\"10.1109/DISCOVER47552.2019.9007958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an ultra low voltage, second order low pass active-RC filter is designed in 90 nm CMOS process. A bulk-driven transconductor and a feed-forward compensated operational transconductance amplifier (OTA) are used as building blocks of the filter. Operating with a supply voltage of 0.5 V, filter exhibits a low pass Butterworth response with a cutoff frequency of 1 MHz. A mathematical model of the filter is developed using descriptor state-space equations for optimizing the filter response. The designed filter consumes a power as less as 91.99 μW with a figure of merit (FoM) of 3.39 fJ/pole.\",\"PeriodicalId\":274260,\"journal\":{\"name\":\"2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER47552.2019.9007958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER47552.2019.9007958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra low voltage, low power active-RC filter in 90 nm CMOS technology
In this work, an ultra low voltage, second order low pass active-RC filter is designed in 90 nm CMOS process. A bulk-driven transconductor and a feed-forward compensated operational transconductance amplifier (OTA) are used as building blocks of the filter. Operating with a supply voltage of 0.5 V, filter exhibits a low pass Butterworth response with a cutoff frequency of 1 MHz. A mathematical model of the filter is developed using descriptor state-space equations for optimizing the filter response. The designed filter consumes a power as less as 91.99 μW with a figure of merit (FoM) of 3.39 fJ/pole.