使用高级PSO变体的数据聚类

Jayshree Ghorpade-aher, Vishakha A. Metre
{"title":"使用高级PSO变体的数据聚类","authors":"Jayshree Ghorpade-aher, Vishakha A. Metre","doi":"10.1109/INDICON.2014.7030613","DOIUrl":null,"url":null,"abstract":"This paper proposes an advanced PSO variant using Subtractive Clustering methodology for data clustering. The implementation of this algorithm will be used to provide fast, efficient and appropriate solution for any complex clustering problem. This algorithm addresses the basic challenges faced with the existing PSO based clustering techniques i.e. preknowledge of initial cluster centers, dead unit problem, premature convergence to local optima, stagnation problem, etc. The proposed algorithm proved that the use of Subtractive Clustering methodology at the start of any PSO approach can improve the clustering process by suggesting good initial cluster centers and number of clusters in advance and then fasten the further clustering with the use of adaptive inertia weight factor and boundary restriction strategy. The performance of proposed algorithm is tested against well know clustering techniques over three datasets, where the results showed a better or comparable performance with respect to accuracy of clustering and convergence rate.","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data clustering using an advanced PSO variant\",\"authors\":\"Jayshree Ghorpade-aher, Vishakha A. Metre\",\"doi\":\"10.1109/INDICON.2014.7030613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an advanced PSO variant using Subtractive Clustering methodology for data clustering. The implementation of this algorithm will be used to provide fast, efficient and appropriate solution for any complex clustering problem. This algorithm addresses the basic challenges faced with the existing PSO based clustering techniques i.e. preknowledge of initial cluster centers, dead unit problem, premature convergence to local optima, stagnation problem, etc. The proposed algorithm proved that the use of Subtractive Clustering methodology at the start of any PSO approach can improve the clustering process by suggesting good initial cluster centers and number of clusters in advance and then fasten the further clustering with the use of adaptive inertia weight factor and boundary restriction strategy. The performance of proposed algorithm is tested against well know clustering techniques over three datasets, where the results showed a better or comparable performance with respect to accuracy of clustering and convergence rate.\",\"PeriodicalId\":409794,\"journal\":{\"name\":\"2014 Annual IEEE India Conference (INDICON)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2014.7030613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种改进的粒子群算法,使用减法聚类方法进行数据聚类。该算法的实现将为任何复杂的聚类问题提供快速、有效和合适的解决方案。该算法解决了现有基于粒子群算法的聚类技术所面临的基本挑战,即初始聚类中心的预知、死单元问题、过早收敛到局部最优、停滞问题等。该算法证明了在任何粒子群算法开始时使用减法聚类方法都可以通过提前给出良好的初始聚类中心和聚类数量来改进聚类过程,然后使用自适应惯性权重因子和边界约束策略来加快进一步聚类。在三个数据集上对所提出的算法的性能进行了测试,结果表明,在聚类精度和收敛速度方面,该算法具有更好或可比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data clustering using an advanced PSO variant
This paper proposes an advanced PSO variant using Subtractive Clustering methodology for data clustering. The implementation of this algorithm will be used to provide fast, efficient and appropriate solution for any complex clustering problem. This algorithm addresses the basic challenges faced with the existing PSO based clustering techniques i.e. preknowledge of initial cluster centers, dead unit problem, premature convergence to local optima, stagnation problem, etc. The proposed algorithm proved that the use of Subtractive Clustering methodology at the start of any PSO approach can improve the clustering process by suggesting good initial cluster centers and number of clusters in advance and then fasten the further clustering with the use of adaptive inertia weight factor and boundary restriction strategy. The performance of proposed algorithm is tested against well know clustering techniques over three datasets, where the results showed a better or comparable performance with respect to accuracy of clustering and convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信