符号可塑零知识证明

M. Backes, Fabian Bendun, Matteo Maffei, Esfandiar Mohammadi, Kim Pecina
{"title":"符号可塑零知识证明","authors":"M. Backes, Fabian Bendun, Matteo Maffei, Esfandiar Mohammadi, Kim Pecina","doi":"10.1109/CSF.2015.35","DOIUrl":null,"url":null,"abstract":"Zero-knowledge (ZK) proofs have become a central building block for a variety of modern security protocols. Modern ZK constructions, such as the Groth-Sahai proof system, offer novel types of cryptographic flexibility: a participant is able to re-randomize existing ZK proofs to achieve, for instance, message unlink ability in anonymity protocols, she can hide public parts of a ZK proof statement to meet her specific privacy requirements, and she can logically compose ZK proofs in order to construct new proof statements. ZK proof systems that permit these transformations are called malleable. However, since these transformations are accessible also to the adversary, analyzing the security of these protocols requires one to cope with a much more comprehensive attacker model -- a challenge that automated protocol analysis thus far has not been capable of dealing with. In this work, we introduce the first symbolic abstraction of malleable ZK proofs. We further prove the computational soundness of our abstraction with respect to observational equivalence, which enables the computationally sound verification of privacy properties. Finally, we show that our symbolic abstraction is suitable for ProVerif, a state-of-the-art cryptographic protocol verifier, by verifying an improved version of the anonymous webs of trust protocol.","PeriodicalId":210917,"journal":{"name":"2015 IEEE 28th Computer Security Foundations Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Symbolic Malleable Zero-Knowledge Proofs\",\"authors\":\"M. Backes, Fabian Bendun, Matteo Maffei, Esfandiar Mohammadi, Kim Pecina\",\"doi\":\"10.1109/CSF.2015.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-knowledge (ZK) proofs have become a central building block for a variety of modern security protocols. Modern ZK constructions, such as the Groth-Sahai proof system, offer novel types of cryptographic flexibility: a participant is able to re-randomize existing ZK proofs to achieve, for instance, message unlink ability in anonymity protocols, she can hide public parts of a ZK proof statement to meet her specific privacy requirements, and she can logically compose ZK proofs in order to construct new proof statements. ZK proof systems that permit these transformations are called malleable. However, since these transformations are accessible also to the adversary, analyzing the security of these protocols requires one to cope with a much more comprehensive attacker model -- a challenge that automated protocol analysis thus far has not been capable of dealing with. In this work, we introduce the first symbolic abstraction of malleable ZK proofs. We further prove the computational soundness of our abstraction with respect to observational equivalence, which enables the computationally sound verification of privacy properties. Finally, we show that our symbolic abstraction is suitable for ProVerif, a state-of-the-art cryptographic protocol verifier, by verifying an improved version of the anonymous webs of trust protocol.\",\"PeriodicalId\":210917,\"journal\":{\"name\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 28th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2015.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 28th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

零知识(ZK)证明已经成为各种现代安全协议的核心构建块。现代ZK结构,如Groth-Sahai证明系统,提供了新型的加密灵活性:参与者能够重新随机化现有的ZK证明,以实现匿名协议中的消息解除链接能力,她可以隐藏ZK证明语句的公共部分,以满足她特定的隐私要求,她可以逻辑地组合ZK证明,以构建新的证明语句。允许这些转换的ZK证明系统被称为可延展性。然而,由于攻击者也可以访问这些转换,因此分析这些协议的安全性需要处理更全面的攻击者模型——到目前为止,自动化协议分析还无法处理这一挑战。在这项工作中,我们引入了可延展ZK证明的第一个符号抽象。我们进一步证明了我们的抽象在观测等价方面的计算合理性,这使得隐私属性的计算合理性验证成为可能。最后,我们通过验证匿名信任网协议的改进版本,证明了我们的符号抽象适用于最先进的加密协议验证器ProVerif。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic Malleable Zero-Knowledge Proofs
Zero-knowledge (ZK) proofs have become a central building block for a variety of modern security protocols. Modern ZK constructions, such as the Groth-Sahai proof system, offer novel types of cryptographic flexibility: a participant is able to re-randomize existing ZK proofs to achieve, for instance, message unlink ability in anonymity protocols, she can hide public parts of a ZK proof statement to meet her specific privacy requirements, and she can logically compose ZK proofs in order to construct new proof statements. ZK proof systems that permit these transformations are called malleable. However, since these transformations are accessible also to the adversary, analyzing the security of these protocols requires one to cope with a much more comprehensive attacker model -- a challenge that automated protocol analysis thus far has not been capable of dealing with. In this work, we introduce the first symbolic abstraction of malleable ZK proofs. We further prove the computational soundness of our abstraction with respect to observational equivalence, which enables the computationally sound verification of privacy properties. Finally, we show that our symbolic abstraction is suitable for ProVerif, a state-of-the-art cryptographic protocol verifier, by verifying an improved version of the anonymous webs of trust protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信