负载参数不确定下基于神经网络的自适应模型预测控制

Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai
{"title":"负载参数不确定下基于神经网络的自适应模型预测控制","authors":"Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai","doi":"10.1109/CEECT55960.2022.10030277","DOIUrl":null,"url":null,"abstract":"This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties\",\"authors\":\"Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai\",\"doi\":\"10.1109/CEECT55960.2022.10030277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.\",\"PeriodicalId\":187017,\"journal\":{\"name\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEECT55960.2022.10030277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的基于神经网络的自适应模型预测控制方法(NN-AMPC)。首先,利用匹配的模型参数,设计了功率变换器的监督MPC控制器。接下来,利用来自监督控制器的运行信息构建和离线训练一个神经网络。然后利用训练好的神经网络建立了实用的FPGA自适应MPC控制器,对功率变换器进行在线控制。所提出的神经网络- ampc可以自适应跟踪负荷参数的变化,而不需要额外的负荷参数识别过程。分析了负载参数阶跃变化下NN-AMPC的动态响应,并与传统MPC进行了比较。以三相电压源逆变器(VSI)为例,验证了神经网络- ampc的概念。结果表明,与基于观测器的MPC控制器相比,基于FPGA的NN-AMPC控制器在不确定参数存在时具有更好的动态性能,同时减少了对FPGA资源的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties
This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信