视觉变压器的学习速率范围测试

Rinka Kiriyama, A. Sashima, I. Shimizu
{"title":"视觉变压器的学习速率范围测试","authors":"Rinka Kiriyama, A. Sashima, I. Shimizu","doi":"10.1117/12.2692013","DOIUrl":null,"url":null,"abstract":"The solutions obtained by training the deep neural network are highly dependent on the parameters including the learning rate. Therefore, finding the appropriate settings for training deep neural networks is very important. In particular, it is necessary to find the better settings for SOTA models of Vision Transformer(ViT), whose structure is different from ordinal models. In this paper, we focus on the learning rate to find a better value using the Learning Rate Range Test (LRRT). Through our experiments, we found that the appropriate LR is located where the decrease in loss value stops in the LRRT. In addition, we discuss about the effects of the number of epochs and the LR warm up.","PeriodicalId":361127,"journal":{"name":"International Conference on Images, Signals, and Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning rate range test for the vision transformer\",\"authors\":\"Rinka Kiriyama, A. Sashima, I. Shimizu\",\"doi\":\"10.1117/12.2692013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions obtained by training the deep neural network are highly dependent on the parameters including the learning rate. Therefore, finding the appropriate settings for training deep neural networks is very important. In particular, it is necessary to find the better settings for SOTA models of Vision Transformer(ViT), whose structure is different from ordinal models. In this paper, we focus on the learning rate to find a better value using the Learning Rate Range Test (LRRT). Through our experiments, we found that the appropriate LR is located where the decrease in loss value stops in the LRRT. In addition, we discuss about the effects of the number of epochs and the LR warm up.\",\"PeriodicalId\":361127,\"journal\":{\"name\":\"International Conference on Images, Signals, and Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Images, Signals, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2692013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Images, Signals, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2692013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络训练得到的解高度依赖于包括学习率在内的参数。因此,为训练深度神经网络找到合适的设置是非常重要的。特别是对于结构不同于普通模型的视觉变压器(Vision Transformer, ViT)的SOTA模型,有必要寻找更好的设置。在本文中,我们将重点放在学习率上,使用学习率范围测试(LRRT)来找到一个更好的值。通过我们的实验,我们发现合适的LR位于LRRT中损失值停止下降的地方。此外,我们还讨论了历元数和LR升温的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning rate range test for the vision transformer
The solutions obtained by training the deep neural network are highly dependent on the parameters including the learning rate. Therefore, finding the appropriate settings for training deep neural networks is very important. In particular, it is necessary to find the better settings for SOTA models of Vision Transformer(ViT), whose structure is different from ordinal models. In this paper, we focus on the learning rate to find a better value using the Learning Rate Range Test (LRRT). Through our experiments, we found that the appropriate LR is located where the decrease in loss value stops in the LRRT. In addition, we discuss about the effects of the number of epochs and the LR warm up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信