彩色图像的分层分割

Qiang Chen
{"title":"彩色图像的分层分割","authors":"Qiang Chen","doi":"10.1109/CISP.2015.7408012","DOIUrl":null,"url":null,"abstract":"It is a challenging task in the field of computer vision to obtain the hierarchical segmentation for a color image. This paper focuses on the problem of efficiently performing hierarchical segmentation and improving the segmentation precision. We first apply multiscale normalized cut to image pre-segmentation step to replace Voronoi algorithm or watershed transformation. In addition, an improved ultrametric measure method is introduced and employed to merger regions. Finally, the hierarchical segmentation results are obtained and one can get the best segmentation result by using threshold. Experimental results show that the proposed method is able to provide accurate segmentation result with high computational efficiency.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical segmentation for color images\",\"authors\":\"Qiang Chen\",\"doi\":\"10.1109/CISP.2015.7408012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenging task in the field of computer vision to obtain the hierarchical segmentation for a color image. This paper focuses on the problem of efficiently performing hierarchical segmentation and improving the segmentation precision. We first apply multiscale normalized cut to image pre-segmentation step to replace Voronoi algorithm or watershed transformation. In addition, an improved ultrametric measure method is introduced and employed to merger regions. Finally, the hierarchical segmentation results are obtained and one can get the best segmentation result by using threshold. Experimental results show that the proposed method is able to provide accurate segmentation result with high computational efficiency.\",\"PeriodicalId\":167631,\"journal\":{\"name\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2015.7408012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7408012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对彩色图像进行分层分割是计算机视觉领域的一个具有挑战性的课题。本文主要研究如何有效地进行分层分割,提高分割精度的问题。我们首先将多尺度归一化切割应用于图像预分割步骤,以取代Voronoi算法或分水岭变换。此外,还介绍了一种改进的超密测量方法,并将其应用于合并区域。最后,得到了分层分割的结果,利用阈值可以得到最佳的分割结果。实验结果表明,该方法能够提供准确的分割结果,计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical segmentation for color images
It is a challenging task in the field of computer vision to obtain the hierarchical segmentation for a color image. This paper focuses on the problem of efficiently performing hierarchical segmentation and improving the segmentation precision. We first apply multiscale normalized cut to image pre-segmentation step to replace Voronoi algorithm or watershed transformation. In addition, an improved ultrametric measure method is introduced and employed to merger regions. Finally, the hierarchical segmentation results are obtained and one can get the best segmentation result by using threshold. Experimental results show that the proposed method is able to provide accurate segmentation result with high computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信