用自然语言处理方法对泰语邮件的地址成分进行分类

P. Chaiyaput, P. Kumhom, K. Chammongthai
{"title":"用自然语言处理方法对泰语邮件的地址成分进行分类","authors":"P. Chaiyaput, P. Kumhom, K. Chammongthai","doi":"10.1109/ICIT.2002.1189366","DOIUrl":null,"url":null,"abstract":"Since the writing format of Thai postal address is not fixed, it is difficult to classify the address components. This paper proposes a method to classify address components by using natural language processing (NLP) in order to absorb the nonfixed writing format and a little misspelling. This method finds the zip code and house number and uses them to extract only the address components from the overall destination address block. Secondly, we find the prefix of province that is the largest area component in the address. The province name following the searched prefix is a key to classify the smaller districts such as district and locality by matching in database. In case of a little misspelling, the most similar district in the matched province domain is selected as candidate, and the thresholding determines the district. In experiments, we utilized 500 address samples. The results show 86% accuracy.","PeriodicalId":344984,"journal":{"name":"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying address components of Thai mail by natural language processing\",\"authors\":\"P. Chaiyaput, P. Kumhom, K. Chammongthai\",\"doi\":\"10.1109/ICIT.2002.1189366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the writing format of Thai postal address is not fixed, it is difficult to classify the address components. This paper proposes a method to classify address components by using natural language processing (NLP) in order to absorb the nonfixed writing format and a little misspelling. This method finds the zip code and house number and uses them to extract only the address components from the overall destination address block. Secondly, we find the prefix of province that is the largest area component in the address. The province name following the searched prefix is a key to classify the smaller districts such as district and locality by matching in database. In case of a little misspelling, the most similar district in the matched province domain is selected as candidate, and the thresholding determines the district. In experiments, we utilized 500 address samples. The results show 86% accuracy.\",\"PeriodicalId\":344984,\"journal\":{\"name\":\"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2002.1189366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2002.1189366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于泰国邮政地址的书写格式不固定,因此很难对地址成分进行分类。本文提出了一种利用自然语言处理(NLP)对地址成分进行分类的方法,以吸收不固定的书写格式和少量拼写错误。此方法查找邮政编码和门牌号,并使用它们仅从整个目的地地址块中提取地址组件。其次,我们发现省份前缀是地址中最大的区域组成部分。搜索前缀后面的省份名称是通过在数据库中匹配对较小的地区(如district和locality)进行分类的关键。如果出现少量拼写错误,则选择匹配省域中最相似的地区作为候选地区,并通过阈值确定地区。在实验中,我们使用了500个地址样本。结果显示准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying address components of Thai mail by natural language processing
Since the writing format of Thai postal address is not fixed, it is difficult to classify the address components. This paper proposes a method to classify address components by using natural language processing (NLP) in order to absorb the nonfixed writing format and a little misspelling. This method finds the zip code and house number and uses them to extract only the address components from the overall destination address block. Secondly, we find the prefix of province that is the largest area component in the address. The province name following the searched prefix is a key to classify the smaller districts such as district and locality by matching in database. In case of a little misspelling, the most similar district in the matched province domain is selected as candidate, and the thresholding determines the district. In experiments, we utilized 500 address samples. The results show 86% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信