自适应行程时间预测模型的性能评价

S. Bajwa, Edward Chung, Masao Kuwahara
{"title":"自适应行程时间预测模型的性能评价","authors":"S. Bajwa, Edward Chung, Masao Kuwahara","doi":"10.1109/ITSC.2005.1520187","DOIUrl":null,"url":null,"abstract":"This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using genetic algorithms. Results indicate better performance by using the proposed model than the presently used naive model.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Performance evaluation of an adaptive travel time prediction model\",\"authors\":\"S. Bajwa, Edward Chung, Masao Kuwahara\",\"doi\":\"10.1109/ITSC.2005.1520187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using genetic algorithms. Results indicate better performance by using the proposed model than the presently used naive model.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

提出了一种行程时间预测模型,并对其性能和可转移性进行了评价。先进的旅游信息系统(ATIS)越来越重要,旅行者对准确、及时和有用的信息的需求也越来越大。出行时间信息以一种便于用户理解的方式量化了交通状况。所提出的旅行时间预测模型是基于最近邻搜索的有效利用。该模型使用遗传算法校准为最佳性能。结果表明,该模型比目前使用的朴素模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of an adaptive travel time prediction model
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using genetic algorithms. Results indicate better performance by using the proposed model than the presently used naive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信