{"title":"聚合物衬底微晶硅应变传感器","authors":"Lisong Zhou, T. Jackson","doi":"10.1109/DRC.2004.1367805","DOIUrl":null,"url":null,"abstract":"Metallic foil and semiconductor piezoresistors are frequently used as strain sensors in shape or strain monitoring applications. The sensors are typically connected in a Wheatstone bridge configuration and mounted on the surface or body to be tested. Semiconductor sensors, for example crystalline silicon, can provide good strain sensitivity with significantly reduced sensor area and also reduced bridge power compared to metal resistor bridges. a-Si:H strain sensors fabricated on glass substrates have recently been demonstrated (G. de Cesare et al, Thin Solid Films, vol. 427, p. 191, 2003). We report here the first microcrystalline-silicon (/spl mu/C-Si) strain sensors fabricated directly on flexible polyimide substrates with similar gage factor but very low power and higher yield compared to metallic strain sensor.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polymeric substrate microcrystalline-silicon strain sensor\",\"authors\":\"Lisong Zhou, T. Jackson\",\"doi\":\"10.1109/DRC.2004.1367805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic foil and semiconductor piezoresistors are frequently used as strain sensors in shape or strain monitoring applications. The sensors are typically connected in a Wheatstone bridge configuration and mounted on the surface or body to be tested. Semiconductor sensors, for example crystalline silicon, can provide good strain sensitivity with significantly reduced sensor area and also reduced bridge power compared to metal resistor bridges. a-Si:H strain sensors fabricated on glass substrates have recently been demonstrated (G. de Cesare et al, Thin Solid Films, vol. 427, p. 191, 2003). We report here the first microcrystalline-silicon (/spl mu/C-Si) strain sensors fabricated directly on flexible polyimide substrates with similar gage factor but very low power and higher yield compared to metallic strain sensor.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
金属箔和半导体压敏电阻在形状或应变监测应用中经常用作应变传感器。传感器通常以惠斯通电桥结构连接,安装在待测物体的表面或本体上。半导体传感器,例如晶体硅,与金属电阻器电桥相比,可以提供良好的应变灵敏度,显著减少传感器面积,也降低了电桥功率。在玻璃基板上制造的a-Si:H应变传感器最近得到了证实(G. de Cesare等人,Thin Solid Films, vol. 427, p. 191, 2003)。我们在这里报道了第一个直接在柔性聚酰亚胺衬底上制造的微晶硅(/spl mu/C-Si)应变传感器,与金属应变传感器相比,具有相似的测量因子,但功耗非常低,产量更高。
Metallic foil and semiconductor piezoresistors are frequently used as strain sensors in shape or strain monitoring applications. The sensors are typically connected in a Wheatstone bridge configuration and mounted on the surface or body to be tested. Semiconductor sensors, for example crystalline silicon, can provide good strain sensitivity with significantly reduced sensor area and also reduced bridge power compared to metal resistor bridges. a-Si:H strain sensors fabricated on glass substrates have recently been demonstrated (G. de Cesare et al, Thin Solid Films, vol. 427, p. 191, 2003). We report here the first microcrystalline-silicon (/spl mu/C-Si) strain sensors fabricated directly on flexible polyimide substrates with similar gage factor but very low power and higher yield compared to metallic strain sensor.