{"title":"用于力传感的超高Q纳米机械谐振器","authors":"A. Eichler","doi":"10.1088/2633-4356/acaba4","DOIUrl":null,"url":null,"abstract":"\n Nanomechanical resonators with ultra-high quality factors have become a central element in fundamental research, enabling measurements below the standard quantum limit and the preparation of long-lived quantum states. Here, I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution, paving the way to future nanoscale magnetic resonance imaging instruments. The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra-high Q nanomechanical resonators for force sensing\",\"authors\":\"A. Eichler\",\"doi\":\"10.1088/2633-4356/acaba4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nanomechanical resonators with ultra-high quality factors have become a central element in fundamental research, enabling measurements below the standard quantum limit and the preparation of long-lived quantum states. Here, I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution, paving the way to future nanoscale magnetic resonance imaging instruments. The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/acaba4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/acaba4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-high Q nanomechanical resonators for force sensing
Nanomechanical resonators with ultra-high quality factors have become a central element in fundamental research, enabling measurements below the standard quantum limit and the preparation of long-lived quantum states. Here, I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution, paving the way to future nanoscale magnetic resonance imaging instruments. The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.