{"title":"基于遗传规划的桥式起重机辨识","authors":"Tom Kusznir, J. Smoczek","doi":"10.2478/jok-2021-0038","DOIUrl":null,"url":null,"abstract":"Abstract Overhead cranes carry out an important function in the transportation of loads in industry. The ability to transport a payload quickly and accurately without excessive oscillations could reduce the chance of accidents as well as increase productivity. Accurate modelling of the crane system dynamics reduces the plant-model mismatch which could improve the performance of model-based controllers. In this work the simulation model to be identified is developed using the Euler-Lagrange method with friction. A 5-step ahead predictor, as well as a 10-step ahead predictor, are obtained using multi-gene genetic programming (MGGP) using input-output data. The weights of the genes are obtained by using least squares. The results of 15 different genetic programming runs are plotted on a complexity-mean square error graph with the Pareto optimal solutions shown.","PeriodicalId":342247,"journal":{"name":"Journal of KONBiN","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic Programming Based Identification of an Overhead Crane\",\"authors\":\"Tom Kusznir, J. Smoczek\",\"doi\":\"10.2478/jok-2021-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Overhead cranes carry out an important function in the transportation of loads in industry. The ability to transport a payload quickly and accurately without excessive oscillations could reduce the chance of accidents as well as increase productivity. Accurate modelling of the crane system dynamics reduces the plant-model mismatch which could improve the performance of model-based controllers. In this work the simulation model to be identified is developed using the Euler-Lagrange method with friction. A 5-step ahead predictor, as well as a 10-step ahead predictor, are obtained using multi-gene genetic programming (MGGP) using input-output data. The weights of the genes are obtained by using least squares. The results of 15 different genetic programming runs are plotted on a complexity-mean square error graph with the Pareto optimal solutions shown.\",\"PeriodicalId\":342247,\"journal\":{\"name\":\"Journal of KONBiN\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of KONBiN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jok-2021-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of KONBiN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jok-2021-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic Programming Based Identification of an Overhead Crane
Abstract Overhead cranes carry out an important function in the transportation of loads in industry. The ability to transport a payload quickly and accurately without excessive oscillations could reduce the chance of accidents as well as increase productivity. Accurate modelling of the crane system dynamics reduces the plant-model mismatch which could improve the performance of model-based controllers. In this work the simulation model to be identified is developed using the Euler-Lagrange method with friction. A 5-step ahead predictor, as well as a 10-step ahead predictor, are obtained using multi-gene genetic programming (MGGP) using input-output data. The weights of the genes are obtained by using least squares. The results of 15 different genetic programming runs are plotted on a complexity-mean square error graph with the Pareto optimal solutions shown.