Joen Dahlberg, T. Granberg, Tatiana Polishchuk, Christiane Schmidt, L. Sedov
{"title":"基于容量驱动的动态飞机到达航线自动设计","authors":"Joen Dahlberg, T. Granberg, Tatiana Polishchuk, Christiane Schmidt, L. Sedov","doi":"10.1109/DASC.2018.8569646","DOIUrl":null,"url":null,"abstract":"We present a Mixed-Integer Programming framework for the design of aircraft arrival routes in a Terminal Maneuvering Area (TMA) that guarantee temporal separation of aircraft. The output routes constitute operationally feasible merge trees, and guarantee that the overall traffic pattern in the TMA can be monitored by air traffic controllers; in particular, we ensure that all aircraft on the arrival routes are separated in time and all merge points are spatially separated. We present a proof of concept of our approach, and demonstrate its feasibility by experiments for arrival routes during one hour at Stockholm TMA.","PeriodicalId":405724,"journal":{"name":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Capacity-Driven Automatic Design of Dynamic Aircraft Arrival Routes\",\"authors\":\"Joen Dahlberg, T. Granberg, Tatiana Polishchuk, Christiane Schmidt, L. Sedov\",\"doi\":\"10.1109/DASC.2018.8569646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Mixed-Integer Programming framework for the design of aircraft arrival routes in a Terminal Maneuvering Area (TMA) that guarantee temporal separation of aircraft. The output routes constitute operationally feasible merge trees, and guarantee that the overall traffic pattern in the TMA can be monitored by air traffic controllers; in particular, we ensure that all aircraft on the arrival routes are separated in time and all merge points are spatially separated. We present a proof of concept of our approach, and demonstrate its feasibility by experiments for arrival routes during one hour at Stockholm TMA.\",\"PeriodicalId\":405724,\"journal\":{\"name\":\"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2018.8569646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2018.8569646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capacity-Driven Automatic Design of Dynamic Aircraft Arrival Routes
We present a Mixed-Integer Programming framework for the design of aircraft arrival routes in a Terminal Maneuvering Area (TMA) that guarantee temporal separation of aircraft. The output routes constitute operationally feasible merge trees, and guarantee that the overall traffic pattern in the TMA can be monitored by air traffic controllers; in particular, we ensure that all aircraft on the arrival routes are separated in time and all merge points are spatially separated. We present a proof of concept of our approach, and demonstrate its feasibility by experiments for arrival routes during one hour at Stockholm TMA.