脑MRI图像分割的改进k -均值算法

Jianwei Liu, Lei Guo
{"title":"脑MRI图像分割的改进k -均值算法","authors":"Jianwei Liu, Lei Guo","doi":"10.2991/ICMRA-15.2015.210","DOIUrl":null,"url":null,"abstract":"For the problem of low accuracy by the traditional K-means clustering algorithm to segment noised brain magnetic resonance imaging (MRI) images. This paper proposed an improved K-means algorithm. The traditional K-means algorithm only considers the brain image gray value itself, ignoring the relationship between pixels. Due to the characteristics of brain MRI image adjacent pixels most likely belonging to the same class, this paper adopts average value of small neighborhood of each image pixel and image gray value to compose a new sample point, in order to reduce the impact of noise on the clustering accuracy. Experimental results show that the improved K-means algorithm can effectively improve the segmentation accuracy of the noised brain MRI image.","PeriodicalId":270248,"journal":{"name":"International Congress of Mathematicans","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Improved K-means Algorithm for Brain MRI Image Segmentation\",\"authors\":\"Jianwei Liu, Lei Guo\",\"doi\":\"10.2991/ICMRA-15.2015.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problem of low accuracy by the traditional K-means clustering algorithm to segment noised brain magnetic resonance imaging (MRI) images. This paper proposed an improved K-means algorithm. The traditional K-means algorithm only considers the brain image gray value itself, ignoring the relationship between pixels. Due to the characteristics of brain MRI image adjacent pixels most likely belonging to the same class, this paper adopts average value of small neighborhood of each image pixel and image gray value to compose a new sample point, in order to reduce the impact of noise on the clustering accuracy. Experimental results show that the improved K-means algorithm can effectively improve the segmentation accuracy of the noised brain MRI image.\",\"PeriodicalId\":270248,\"journal\":{\"name\":\"International Congress of Mathematicans\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Congress of Mathematicans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ICMRA-15.2015.210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress of Mathematicans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ICMRA-15.2015.210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对传统的k均值聚类算法对脑磁共振成像(MRI)图像进行分割精度低的问题。本文提出了一种改进的K-means算法。传统的K-means算法只考虑脑图像本身的灰度值,忽略了像素之间的关系。由于脑MRI图像相邻像素极有可能属于同一类的特点,本文采用每个图像像素小邻域的平均值和图像灰度值组成新的样本点,以降低噪声对聚类精度的影响。实验结果表明,改进的K-means算法能有效提高脑MRI图像的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved K-means Algorithm for Brain MRI Image Segmentation
For the problem of low accuracy by the traditional K-means clustering algorithm to segment noised brain magnetic resonance imaging (MRI) images. This paper proposed an improved K-means algorithm. The traditional K-means algorithm only considers the brain image gray value itself, ignoring the relationship between pixels. Due to the characteristics of brain MRI image adjacent pixels most likely belonging to the same class, this paper adopts average value of small neighborhood of each image pixel and image gray value to compose a new sample point, in order to reduce the impact of noise on the clustering accuracy. Experimental results show that the improved K-means algorithm can effectively improve the segmentation accuracy of the noised brain MRI image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信