不可分解表示的性质

V. Y. Kurniawan
{"title":"不可分解表示的性质","authors":"V. Y. Kurniawan","doi":"10.22487/25411969.2019.v8.i3.14598","DOIUrl":null,"url":null,"abstract":"A directed graph is also called as a quiver  where  is a finite set of vertices,  is a set of arrows, and  are two maps from  to . A representation  of a quiver  is an assignment of a vector space  to each vertex  of  and a linear mapping  to each arrow.  We denote by  the direct sum of representasions  and  of a quiver  . A representation  is called indecomposable if  is not ishomorphic to a direct sum of non-zero representations. This paper study about the properties of indecomposable representations. These properties will be used to investigate the necessary and sufficient condition of indecomposable representations.","PeriodicalId":399499,"journal":{"name":"Natural Science: Journal of Science and Technology","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sifat-Sifat Representasi Indekomposabel The Properties of Indecomposable Representations\",\"authors\":\"V. Y. Kurniawan\",\"doi\":\"10.22487/25411969.2019.v8.i3.14598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A directed graph is also called as a quiver  where  is a finite set of vertices,  is a set of arrows, and  are two maps from  to . A representation  of a quiver  is an assignment of a vector space  to each vertex  of  and a linear mapping  to each arrow.  We denote by  the direct sum of representasions  and  of a quiver  . A representation  is called indecomposable if  is not ishomorphic to a direct sum of non-zero representations. This paper study about the properties of indecomposable representations. These properties will be used to investigate the necessary and sufficient condition of indecomposable representations.\",\"PeriodicalId\":399499,\"journal\":{\"name\":\"Natural Science: Journal of Science and Technology\",\"volume\":\"385 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Science: Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22487/25411969.2019.v8.i3.14598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Science: Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/25411969.2019.v8.i3.14598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有向图也被称为箭矢,它是一组有限的顶点,是一组箭头,是两个从到的映射。箭矢的表示是对箭矢的每个顶点的向量空间的赋值以及对每个箭矢的线性映射。我们用表示和颤振的直接和来表示。如果一个表示不同构于非零表示的直接和,则称为不可分解表示。本文研究了不可分解表示的性质。这些性质将用于研究不可分解表示的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sifat-Sifat Representasi Indekomposabel The Properties of Indecomposable Representations
A directed graph is also called as a quiver  where  is a finite set of vertices,  is a set of arrows, and  are two maps from  to . A representation  of a quiver  is an assignment of a vector space  to each vertex  of  and a linear mapping  to each arrow.  We denote by  the direct sum of representasions  and  of a quiver  . A representation  is called indecomposable if  is not ishomorphic to a direct sum of non-zero representations. This paper study about the properties of indecomposable representations. These properties will be used to investigate the necessary and sufficient condition of indecomposable representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信