利用多线性SVD实现Volterra系统的高效实现

E. Seagraves, B. Walcott, D. Feinauer
{"title":"利用多线性SVD实现Volterra系统的高效实现","authors":"E. Seagraves, B. Walcott, D. Feinauer","doi":"10.1109/ISPACS.2007.4445999","DOIUrl":null,"url":null,"abstract":"A large class of nonlinear systems have been successfully modeled using Volterra series techniques. The problem with Volterra series is that the number of parameters grows very rapidly with the order of the nonlinearity and the memory in the system. Techniques exist to efficiently model and compensate for Volterra systems but are often not practical to implement. One approach is to factor the Volterra kernels into a sum of simple terms that are easy to implement. Approaches utilizing the eigen-decomposition have been published for second order nonlinearities. This work proposes using a multilinear extension of the SVD to factor third and higher order kernels into terms that are easily implemented.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient implementation of Volterra systems using a multilinear SVD\",\"authors\":\"E. Seagraves, B. Walcott, D. Feinauer\",\"doi\":\"10.1109/ISPACS.2007.4445999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large class of nonlinear systems have been successfully modeled using Volterra series techniques. The problem with Volterra series is that the number of parameters grows very rapidly with the order of the nonlinearity and the memory in the system. Techniques exist to efficiently model and compensate for Volterra systems but are often not practical to implement. One approach is to factor the Volterra kernels into a sum of simple terms that are easy to implement. Approaches utilizing the eigen-decomposition have been published for second order nonlinearities. This work proposes using a multilinear extension of the SVD to factor third and higher order kernels into terms that are easily implemented.\",\"PeriodicalId\":220276,\"journal\":{\"name\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2007.4445999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用Volterra级数技术已经成功地对一类非线性系统进行了建模。Volterra级数的问题在于参数的数量会随着非线性的阶数和系统的内存而快速增长。现有的技术可以有效地对Volterra系统进行建模和补偿,但往往无法实现。一种方法是将Volterra核分解为易于实现的简单项的总和。利用特征分解的方法已经发表用于二阶非线性。这项工作提出使用SVD的多线性扩展将三阶和高阶核分解为易于实现的项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient implementation of Volterra systems using a multilinear SVD
A large class of nonlinear systems have been successfully modeled using Volterra series techniques. The problem with Volterra series is that the number of parameters grows very rapidly with the order of the nonlinearity and the memory in the system. Techniques exist to efficiently model and compensate for Volterra systems but are often not practical to implement. One approach is to factor the Volterra kernels into a sum of simple terms that are easy to implement. Approaches utilizing the eigen-decomposition have been published for second order nonlinearities. This work proposes using a multilinear extension of the SVD to factor third and higher order kernels into terms that are easily implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信