通过分布转换提高PCA、ICA的性能

Anu Singha, M. Bhowmik
{"title":"通过分布转换提高PCA、ICA的性能","authors":"Anu Singha, M. Bhowmik","doi":"10.1109/R10-HTC.2017.8288941","DOIUrl":null,"url":null,"abstract":"Holistic based face recognition methods are generally more effective on normally distributed data matrix of face images. The distribution of data matrix follows the standard Gaussian distribution according to central limit theorem, which has not been seen in practical scenarios. In this context, a simple and effective method called transformation of a data matrix to Gaussian matrix (TDG) is proposed. The TDG transforms an arbitrarily distributed data matrix to a Gaussian distribution. This transformed data matrix is then processed through Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Experiments on a benchmark face database IRIS are demonstrated that the proposed transformation process could notably improve the accuracy rates than state-of-art methods.","PeriodicalId":411099,"journal":{"name":"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing performance of PCA, ICA through distribution transformation\",\"authors\":\"Anu Singha, M. Bhowmik\",\"doi\":\"10.1109/R10-HTC.2017.8288941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holistic based face recognition methods are generally more effective on normally distributed data matrix of face images. The distribution of data matrix follows the standard Gaussian distribution according to central limit theorem, which has not been seen in practical scenarios. In this context, a simple and effective method called transformation of a data matrix to Gaussian matrix (TDG) is proposed. The TDG transforms an arbitrarily distributed data matrix to a Gaussian distribution. This transformed data matrix is then processed through Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Experiments on a benchmark face database IRIS are demonstrated that the proposed transformation process could notably improve the accuracy rates than state-of-art methods.\",\"PeriodicalId\":411099,\"journal\":{\"name\":\"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC.2017.8288941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2017.8288941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于整体的人脸识别方法通常对正态分布的人脸图像数据矩阵更有效。数据矩阵遵循标准高斯分布的分布根据中心极限定理,在实际场景中没有见到这种动物了。在此背景下,提出了一种简单有效的数据矩阵到高斯矩阵的变换方法。TDG将任意分布的数据矩阵转换为高斯分布。然后通过主成分分析(PCA)和独立成分分析(ICA)对转换后的数据矩阵进行处理。在人脸基准数据库IRIS上进行的实验表明,与现有的人脸识别方法相比,该方法可以显著提高人脸识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing performance of PCA, ICA through distribution transformation
Holistic based face recognition methods are generally more effective on normally distributed data matrix of face images. The distribution of data matrix follows the standard Gaussian distribution according to central limit theorem, which has not been seen in practical scenarios. In this context, a simple and effective method called transformation of a data matrix to Gaussian matrix (TDG) is proposed. The TDG transforms an arbitrarily distributed data matrix to a Gaussian distribution. This transformed data matrix is then processed through Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Experiments on a benchmark face database IRIS are demonstrated that the proposed transformation process could notably improve the accuracy rates than state-of-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信