使用常识信息的基于位置的Twitter意见挖掘

Amita Jain, Minni Jain
{"title":"使用常识信息的基于位置的Twitter意见挖掘","authors":"Amita Jain, Minni Jain","doi":"10.18311/GJEIS/2017/15616","DOIUrl":null,"url":null,"abstract":"Sentiment analysis research of public information from social networking sites has been increasing immensely in recent years. Data available at social networking sites is one of the most effective and accurate source to identify the public sentiment of any product/service. In this paper, we propose a novel localized opinion mining model based on common sense information extracted from ConceptNet ontology. The proposed methodology allows interpretation and utilization of data extracted from social media site “Twitter” to identify public opinions. This paper includes location specific, male- female specific and concept specific popularities of product. All extracted concepts are used to calculate senti_score and to build a machine learning model that classifies the user opinions as positive or negative.","PeriodicalId":318809,"journal":{"name":"Global Journal of Enterprise Information System","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Location based Twitter Opinion Mining using Common-Sense Information\",\"authors\":\"Amita Jain, Minni Jain\",\"doi\":\"10.18311/GJEIS/2017/15616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis research of public information from social networking sites has been increasing immensely in recent years. Data available at social networking sites is one of the most effective and accurate source to identify the public sentiment of any product/service. In this paper, we propose a novel localized opinion mining model based on common sense information extracted from ConceptNet ontology. The proposed methodology allows interpretation and utilization of data extracted from social media site “Twitter” to identify public opinions. This paper includes location specific, male- female specific and concept specific popularities of product. All extracted concepts are used to calculate senti_score and to build a machine learning model that classifies the user opinions as positive or negative.\",\"PeriodicalId\":318809,\"journal\":{\"name\":\"Global Journal of Enterprise Information System\",\"volume\":\"28 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Enterprise Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/GJEIS/2017/15616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Enterprise Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/GJEIS/2017/15616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,针对社交网站公开信息的情感分析研究得到了极大的发展。社交网站上提供的数据是识别任何产品/服务的公众情绪的最有效和最准确的来源之一。本文提出了一种基于从ConceptNet本体中提取的常识信息的局部意见挖掘模型。拟议的方法允许解释和利用从社交媒体网站“Twitter”中提取的数据来识别公众意见。本文主要包括产品的区位特殊性、男女特殊性和概念特殊性。所有提取的概念都被用来计算senti_score,并建立一个机器学习模型,将用户的意见分类为正面或负面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location based Twitter Opinion Mining using Common-Sense Information
Sentiment analysis research of public information from social networking sites has been increasing immensely in recent years. Data available at social networking sites is one of the most effective and accurate source to identify the public sentiment of any product/service. In this paper, we propose a novel localized opinion mining model based on common sense information extracted from ConceptNet ontology. The proposed methodology allows interpretation and utilization of data extracted from social media site “Twitter” to identify public opinions. This paper includes location specific, male- female specific and concept specific popularities of product. All extracted concepts are used to calculate senti_score and to build a machine learning model that classifies the user opinions as positive or negative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信