基于深度学习的混合键合缺陷分类

Rahul Reddy Komatireddi, Sachin Dangayach, Prayudi Lianto, Rohith Cherikkallil, Sneha Rupa
{"title":"基于深度学习的混合键合缺陷分类","authors":"Rahul Reddy Komatireddi, Sachin Dangayach, Prayudi Lianto, Rohith Cherikkallil, Sneha Rupa","doi":"10.1109/EPTC56328.2022.10013145","DOIUrl":null,"url":null,"abstract":"In the semiconductor industry, defect detection is very important as it affects performance. In Hybrid Bonding, identifying defect types prior to bonding is critical in determining bonding performance. To overcome this challenge, we propose a solution involving Computer Vision and Deep Learning to accomplish classification of these defects with limited availability of data. With this approach, the defect identification time is reduced, thereby driving faster research and product development.","PeriodicalId":163034,"journal":{"name":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Classification using Deep Learning for Hybrid Bonding Application\",\"authors\":\"Rahul Reddy Komatireddi, Sachin Dangayach, Prayudi Lianto, Rohith Cherikkallil, Sneha Rupa\",\"doi\":\"10.1109/EPTC56328.2022.10013145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the semiconductor industry, defect detection is very important as it affects performance. In Hybrid Bonding, identifying defect types prior to bonding is critical in determining bonding performance. To overcome this challenge, we propose a solution involving Computer Vision and Deep Learning to accomplish classification of these defects with limited availability of data. With this approach, the defect identification time is reduced, thereby driving faster research and product development.\",\"PeriodicalId\":163034,\"journal\":{\"name\":\"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC56328.2022.10013145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC56328.2022.10013145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在半导体工业中,缺陷检测是非常重要的,因为它影响性能。在混合键合中,在键合之前识别缺陷类型对于确定键合性能至关重要。为了克服这一挑战,我们提出了一种涉及计算机视觉和深度学习的解决方案,在有限的数据可用性下完成这些缺陷的分类。通过这种方法,减少了缺陷识别时间,从而推动了更快的研究和产品开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect Classification using Deep Learning for Hybrid Bonding Application
In the semiconductor industry, defect detection is very important as it affects performance. In Hybrid Bonding, identifying defect types prior to bonding is critical in determining bonding performance. To overcome this challenge, we propose a solution involving Computer Vision and Deep Learning to accomplish classification of these defects with limited availability of data. With this approach, the defect identification time is reduced, thereby driving faster research and product development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信