基于指令分组的高效动态指令调度逻辑

Hiroshi Sasaki, Masaaki Kondo, Hiroshi Nakamura
{"title":"基于指令分组的高效动态指令调度逻辑","authors":"Hiroshi Sasaki, Masaaki Kondo, Hiroshi Nakamura","doi":"10.1145/1165573.1165585","DOIUrl":null,"url":null,"abstract":"Dynamic instruction scheduling logic is quite complex and dissipates significant energy in microprocessors that support superscalar and out-of-order execution. We propose a novel microarchitectural technique to reduce the complexity and energy consumption of the dynamic instruction scheduling logic. The proposed method groups several instructions as a single issue unit and reduces the required number of ports and the size of the structure for dispatch, wakeup, select, and issue. The present paper describes the microarchitecture mechanisms and shows evaluation results for energy savings and performance. These results reveal that the proposed technique can greatly reduce energy with almost no performance degradation, compared to the conventional dynamic instruction scheduling logic","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Energy-Efficient Dynamic Instruction Scheduling Logic through Instruction Grouping\",\"authors\":\"Hiroshi Sasaki, Masaaki Kondo, Hiroshi Nakamura\",\"doi\":\"10.1145/1165573.1165585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic instruction scheduling logic is quite complex and dissipates significant energy in microprocessors that support superscalar and out-of-order execution. We propose a novel microarchitectural technique to reduce the complexity and energy consumption of the dynamic instruction scheduling logic. The proposed method groups several instructions as a single issue unit and reduces the required number of ports and the size of the structure for dispatch, wakeup, select, and issue. The present paper describes the microarchitecture mechanisms and shows evaluation results for energy savings and performance. These results reveal that the proposed technique can greatly reduce energy with almost no performance degradation, compared to the conventional dynamic instruction scheduling logic\",\"PeriodicalId\":119229,\"journal\":{\"name\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1165573.1165585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

动态指令调度逻辑非常复杂,并且在支持超标量和乱序执行的微处理器中消耗大量能量。为了降低动态指令调度逻辑的复杂度和能耗,提出了一种新的微体系结构技术。该方法将多个指令分组为单个问题单元,减少了分派、唤醒、选择和问题所需的端口数量和结构大小。本文描述了微体系结构机制,并展示了节能和性能的评估结果。这些结果表明,与传统的动态指令调度逻辑相比,该技术可以在几乎没有性能下降的情况下大大降低能量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Dynamic Instruction Scheduling Logic through Instruction Grouping
Dynamic instruction scheduling logic is quite complex and dissipates significant energy in microprocessors that support superscalar and out-of-order execution. We propose a novel microarchitectural technique to reduce the complexity and energy consumption of the dynamic instruction scheduling logic. The proposed method groups several instructions as a single issue unit and reduces the required number of ports and the size of the structure for dispatch, wakeup, select, and issue. The present paper describes the microarchitecture mechanisms and shows evaluation results for energy savings and performance. These results reveal that the proposed technique can greatly reduce energy with almost no performance degradation, compared to the conventional dynamic instruction scheduling logic
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信