补偿视觉缺失的特征:使用概率投票的对象的尺度自适应识别

M. Ryoo, J. Joung, Wonpil Yu
{"title":"补偿视觉缺失的特征:使用概率投票的对象的尺度自适应识别","authors":"M. Ryoo, J. Joung, Wonpil Yu","doi":"10.1109/URAI.2011.6145978","DOIUrl":null,"url":null,"abstract":"In this work-in-progress paper, we present an efficient methodology for a scale-adaptive recognition of objects. We introduce a new object recognition approach, which detects an object in a scene while probabilistically predicting visually missing features. The idea is to enable a better recognition by considering the fact that object features may not be detected depending on its situation (e.g. distance and occlusion). A probabilistic voting-based methodology is developed.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"8 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensating for visually missing features: Scale adaptive recognition of objects using probabilistic voting\",\"authors\":\"M. Ryoo, J. Joung, Wonpil Yu\",\"doi\":\"10.1109/URAI.2011.6145978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work-in-progress paper, we present an efficient methodology for a scale-adaptive recognition of objects. We introduce a new object recognition approach, which detects an object in a scene while probabilistically predicting visually missing features. The idea is to enable a better recognition by considering the fact that object features may not be detected depending on its situation (e.g. distance and occlusion). A probabilistic voting-based methodology is developed.\",\"PeriodicalId\":385925,\"journal\":{\"name\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"8 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2011.6145978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6145978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇正在进行的论文中,我们提出了一种有效的对象尺度自适应识别方法。我们引入了一种新的物体识别方法,该方法在检测场景中的物体的同时,概率地预测视觉上缺失的特征。这个想法是为了更好地识别,考虑到物体的特征可能不会被检测到,这取决于它的情况(例如距离和遮挡)。提出了一种基于概率投票的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compensating for visually missing features: Scale adaptive recognition of objects using probabilistic voting
In this work-in-progress paper, we present an efficient methodology for a scale-adaptive recognition of objects. We introduce a new object recognition approach, which detects an object in a scene while probabilistically predicting visually missing features. The idea is to enable a better recognition by considering the fact that object features may not be detected depending on its situation (e.g. distance and occlusion). A probabilistic voting-based methodology is developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信