{"title":"通过调整器件长宽比实现纳米级蓝宝石上硅高k栅极介电mosfet的工艺诱导应变最大化","authors":"Sulagna Chatterjee","doi":"10.1109/ICEMELEC.2014.7151159","DOIUrl":null,"url":null,"abstract":"In the current paper, a systematic study is presented of step-by-step process-induced stress variation of a Sapphire/Silicon/high-k MOSFET, for various aspect ratios, W/L. A substantial value of compressive stress of about 1 GPa, suitable for hole mobility enhancement, has been obtained. It is observed that the nature of the induced stress depends heavily on device dimensions. The study has been carried out for gate lengths ranging from 100 nm to 10 nm. For a particular gate length, a definite range of W/L ratios has been detected for which the process-induced stress remains uniaxial and therefore acceptable. It is also shown that, for smaller gate lengths the acceptable range of W/L ratios expands, whereas it shrinks towards the higher ratios only, for longer gate lengths.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process-induced-strain maximization of nano-scale silicon-on-sapphire high-k gate-dielectric MOSFETs by adjusting device aspect ratio\",\"authors\":\"Sulagna Chatterjee\",\"doi\":\"10.1109/ICEMELEC.2014.7151159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current paper, a systematic study is presented of step-by-step process-induced stress variation of a Sapphire/Silicon/high-k MOSFET, for various aspect ratios, W/L. A substantial value of compressive stress of about 1 GPa, suitable for hole mobility enhancement, has been obtained. It is observed that the nature of the induced stress depends heavily on device dimensions. The study has been carried out for gate lengths ranging from 100 nm to 10 nm. For a particular gate length, a definite range of W/L ratios has been detected for which the process-induced stress remains uniaxial and therefore acceptable. It is also shown that, for smaller gate lengths the acceptable range of W/L ratios expands, whereas it shrinks towards the higher ratios only, for longer gate lengths.\",\"PeriodicalId\":186054,\"journal\":{\"name\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMELEC.2014.7151159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Process-induced-strain maximization of nano-scale silicon-on-sapphire high-k gate-dielectric MOSFETs by adjusting device aspect ratio
In the current paper, a systematic study is presented of step-by-step process-induced stress variation of a Sapphire/Silicon/high-k MOSFET, for various aspect ratios, W/L. A substantial value of compressive stress of about 1 GPa, suitable for hole mobility enhancement, has been obtained. It is observed that the nature of the induced stress depends heavily on device dimensions. The study has been carried out for gate lengths ranging from 100 nm to 10 nm. For a particular gate length, a definite range of W/L ratios has been detected for which the process-induced stress remains uniaxial and therefore acceptable. It is also shown that, for smaller gate lengths the acceptable range of W/L ratios expands, whereas it shrinks towards the higher ratios only, for longer gate lengths.