J. LAGrandeur, D. Crane, S. Hung, B. Mazar, A. Eder
{"title":"利用skutudite, TAGS, PbTe和BiTe将汽车废热转化为电能","authors":"J. LAGrandeur, D. Crane, S. Hung, B. Mazar, A. Eder","doi":"10.1109/ICT.2006.331220","DOIUrl":null,"url":null,"abstract":"BSST began development of a high efficiency Thermoelectric Waste Energy Recovery System for passenger vehicle applications in November 2004 under a contract [Contract No. DE-FC26-04NT42279] awarded by the U.S. Department of Energy Freedom Car Office. The system reduces fuel consumption by replacing a significant portion of the required electric power normally produced by the alternator with electric power produced from exhaust gas waste heat conversion to electricity in a Thermoelectric Generator Module (TGM). BSST team members include BMW, Visteon and Marlow Industries. In Phase 1, the team created a system architecture, developed a system model to predict performance and established system and subsystem design requirements. The Phase 1 effort resulted in a predicted fuel efficiency increase of 10%. Phase 2 is scheduled to be completed in December, 2006 in which key subsystem components will be built and tested and the system model updated to provide a new performance prediction. This paper presents the current status of the system architecture, modeling and key technologies","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe\",\"authors\":\"J. LAGrandeur, D. Crane, S. Hung, B. Mazar, A. Eder\",\"doi\":\"10.1109/ICT.2006.331220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BSST began development of a high efficiency Thermoelectric Waste Energy Recovery System for passenger vehicle applications in November 2004 under a contract [Contract No. DE-FC26-04NT42279] awarded by the U.S. Department of Energy Freedom Car Office. The system reduces fuel consumption by replacing a significant portion of the required electric power normally produced by the alternator with electric power produced from exhaust gas waste heat conversion to electricity in a Thermoelectric Generator Module (TGM). BSST team members include BMW, Visteon and Marlow Industries. In Phase 1, the team created a system architecture, developed a system model to predict performance and established system and subsystem design requirements. The Phase 1 effort resulted in a predicted fuel efficiency increase of 10%. Phase 2 is scheduled to be completed in December, 2006 in which key subsystem components will be built and tested and the system model updated to provide a new performance prediction. This paper presents the current status of the system architecture, modeling and key technologies\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe
BSST began development of a high efficiency Thermoelectric Waste Energy Recovery System for passenger vehicle applications in November 2004 under a contract [Contract No. DE-FC26-04NT42279] awarded by the U.S. Department of Energy Freedom Car Office. The system reduces fuel consumption by replacing a significant portion of the required electric power normally produced by the alternator with electric power produced from exhaust gas waste heat conversion to electricity in a Thermoelectric Generator Module (TGM). BSST team members include BMW, Visteon and Marlow Industries. In Phase 1, the team created a system architecture, developed a system model to predict performance and established system and subsystem design requirements. The Phase 1 effort resulted in a predicted fuel efficiency increase of 10%. Phase 2 is scheduled to be completed in December, 2006 in which key subsystem components will be built and tested and the system model updated to provide a new performance prediction. This paper presents the current status of the system architecture, modeling and key technologies