线性时变预滤波器最小误差概率分类器在埋藏目标识别中的应用

B. Hamschin, P. Loughlin
{"title":"线性时变预滤波器最小误差概率分类器在埋藏目标识别中的应用","authors":"B. Hamschin, P. Loughlin","doi":"10.1109/OCEANS.2010.5664353","DOIUrl":null,"url":null,"abstract":"In this paper we overview the theory of Linear Time-Varying (LTV) filters and investigate via simulation their application to buried target classification in challenging nonstationary environments; in particular, environments where noise is not only nonstationary but exhibits statistical properties that are not known a priori. We then propose an extension of the Minimum Probability of Error (MPE) classifier (a/k/a Minimum Distance Receiver) by pre-processing the received data through a bank of LTV filters before the calculation of each test statistic via the MPE classifier. The proposed augmented MPE classifier is shown to outperform the conventional MPE classifier via simulation.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of a minimum probability of error classifier with Linear Time-Varying pre-filters for buried target recognition\",\"authors\":\"B. Hamschin, P. Loughlin\",\"doi\":\"10.1109/OCEANS.2010.5664353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we overview the theory of Linear Time-Varying (LTV) filters and investigate via simulation their application to buried target classification in challenging nonstationary environments; in particular, environments where noise is not only nonstationary but exhibits statistical properties that are not known a priori. We then propose an extension of the Minimum Probability of Error (MPE) classifier (a/k/a Minimum Distance Receiver) by pre-processing the received data through a bank of LTV filters before the calculation of each test statistic via the MPE classifier. The proposed augmented MPE classifier is shown to outperform the conventional MPE classifier via simulation.\",\"PeriodicalId\":363534,\"journal\":{\"name\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2010.5664353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5664353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文概述了线性时变(LTV)滤波器的理论,并通过仿真研究了其在非平稳环境下埋地目标分类中的应用;特别是,噪声不仅是非平稳的,而且表现出先验未知的统计特性的环境。然后,我们提出了最小误差概率(MPE)分类器(a/k/a最小距离接收器)的扩展,通过一组LTV滤波器预处理接收到的数据,然后通过MPE分类器计算每个测试统计量。仿真结果表明,本文提出的增强MPE分类器优于传统的MPE分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a minimum probability of error classifier with Linear Time-Varying pre-filters for buried target recognition
In this paper we overview the theory of Linear Time-Varying (LTV) filters and investigate via simulation their application to buried target classification in challenging nonstationary environments; in particular, environments where noise is not only nonstationary but exhibits statistical properties that are not known a priori. We then propose an extension of the Minimum Probability of Error (MPE) classifier (a/k/a Minimum Distance Receiver) by pre-processing the received data through a bank of LTV filters before the calculation of each test statistic via the MPE classifier. The proposed augmented MPE classifier is shown to outperform the conventional MPE classifier via simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信