夜间车辆探测

Ngoc Ho, Mai Pham, Nguyen D. Vo, Khang Nguyen
{"title":"夜间车辆探测","authors":"Ngoc Ho, Mai Pham, Nguyen D. Vo, Khang Nguyen","doi":"10.1109/NICS51282.2020.9335870","DOIUrl":null,"url":null,"abstract":"Recent growth in deep learning has opened up many opportunities for the problem of vehicle detection. Detecting objects in poor visibility is catching scientists attention. In this study, we choose night as the challenge. We conducted training and evaluation of the YOLOv4 method in combination with image preprocessing methods: gamma, CycleGAN's night-day conversion model was retrained on DETRAC data. Night dataset (26,168 images) extracted from DETRAC were used. The results showed that the training on the primitive data is highly effective (64.51%mAP) compared to the image changed from night to day, particularly on the car class (92%AP), bus (91%AP). This is the premise for the next studies and the basis to develop intelligent traffic monitoring systems.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vehicle Detection at Night Time\",\"authors\":\"Ngoc Ho, Mai Pham, Nguyen D. Vo, Khang Nguyen\",\"doi\":\"10.1109/NICS51282.2020.9335870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent growth in deep learning has opened up many opportunities for the problem of vehicle detection. Detecting objects in poor visibility is catching scientists attention. In this study, we choose night as the challenge. We conducted training and evaluation of the YOLOv4 method in combination with image preprocessing methods: gamma, CycleGAN's night-day conversion model was retrained on DETRAC data. Night dataset (26,168 images) extracted from DETRAC were used. The results showed that the training on the primitive data is highly effective (64.51%mAP) compared to the image changed from night to day, particularly on the car class (92%AP), bus (91%AP). This is the premise for the next studies and the basis to develop intelligent traffic monitoring systems.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近深度学习的发展为车辆检测问题提供了许多机会。探测能见度低的物体引起了科学家们的注意。在本研究中,我们选择夜晚作为挑战。我们结合图像预处理方法对YOLOv4方法进行了训练和评估:gamma, CycleGAN的昼夜转换模型在DETRAC数据上进行了再训练。使用从DETRAC中提取的夜间数据集(26168张图像)。结果表明,与夜间变换后的图像相比,在原始数据上的训练效率(64.51%mAP)更高,特别是在汽车类别(92%AP)和公交车类别(91%AP)上的训练效率更高。这是下一步研究的前提,也是开发智能交通监控系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Detection at Night Time
Recent growth in deep learning has opened up many opportunities for the problem of vehicle detection. Detecting objects in poor visibility is catching scientists attention. In this study, we choose night as the challenge. We conducted training and evaluation of the YOLOv4 method in combination with image preprocessing methods: gamma, CycleGAN's night-day conversion model was retrained on DETRAC data. Night dataset (26,168 images) extracted from DETRAC were used. The results showed that the training on the primitive data is highly effective (64.51%mAP) compared to the image changed from night to day, particularly on the car class (92%AP), bus (91%AP). This is the premise for the next studies and the basis to develop intelligent traffic monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信