利用主成分分析法监测硫酸盐回收锅炉污垢

November 2009 Pub Date : 2009-12-01 DOI:10.32964/tj8.11.22
Peter Versteeg, H. Tran
{"title":"利用主成分分析法监测硫酸盐回收锅炉污垢","authors":"Peter Versteeg, H. Tran","doi":"10.32964/tj8.11.22","DOIUrl":null,"url":null,"abstract":"Researchers analyzed high resolution operational data from three recovery boilers using the principal component analysis (PCA) feature of a multivariate statistical analysis program to identify major operating variables that contributed to fouling and plugging. The results show that PCA can be used to visualize the variability relative to long-term fouling trends in the boilers and to graphically distinguish changes in the boiler fouling condition caused by operational variability over a short period. This represents a major step forward in identifying operating variables that might be adjusted to minimize fouling, and in developing an online fouling monitoring technology based on PCA.","PeriodicalId":296374,"journal":{"name":"November 2009","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monitoring kraft recovery boiler fouling using principal component analysis\",\"authors\":\"Peter Versteeg, H. Tran\",\"doi\":\"10.32964/tj8.11.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers analyzed high resolution operational data from three recovery boilers using the principal component analysis (PCA) feature of a multivariate statistical analysis program to identify major operating variables that contributed to fouling and plugging. The results show that PCA can be used to visualize the variability relative to long-term fouling trends in the boilers and to graphically distinguish changes in the boiler fouling condition caused by operational variability over a short period. This represents a major step forward in identifying operating variables that might be adjusted to minimize fouling, and in developing an online fouling monitoring technology based on PCA.\",\"PeriodicalId\":296374,\"journal\":{\"name\":\"November 2009\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"November 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32964/tj8.11.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"November 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32964/tj8.11.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究人员使用多元统计分析程序的主成分分析(PCA)特征分析了三个回收锅炉的高分辨率运行数据,以确定导致污垢和堵塞的主要运行变量。结果表明,主成分分析可以可视化锅炉长期污垢趋势的变化,并以图形方式区分短期内由运行变化引起的锅炉污垢状况的变化。这代表了在识别操作变量方面迈出的重要一步,这些操作变量可以进行调整,以最大限度地减少污垢,并在开发基于PCA的在线污垢监测技术方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring kraft recovery boiler fouling using principal component analysis
Researchers analyzed high resolution operational data from three recovery boilers using the principal component analysis (PCA) feature of a multivariate statistical analysis program to identify major operating variables that contributed to fouling and plugging. The results show that PCA can be used to visualize the variability relative to long-term fouling trends in the boilers and to graphically distinguish changes in the boiler fouling condition caused by operational variability over a short period. This represents a major step forward in identifying operating variables that might be adjusted to minimize fouling, and in developing an online fouling monitoring technology based on PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信