基于校验和线性化和残差预测的非线性数字滤波器并发误差检测

Suvadeep Banerjee, Md Imran Momtaz, A. Chatterjee
{"title":"基于校验和线性化和残差预测的非线性数字滤波器并发误差检测","authors":"Suvadeep Banerjee, Md Imran Momtaz, A. Chatterjee","doi":"10.1109/IOLTS.2015.7229832","DOIUrl":null,"url":null,"abstract":"Soft errors due to alpha particles, neutrons and environmental noise are of increasing concern due to aggressive technology scaling. While prior work has focused mostly on error resilience of linear signal processing algorithms, there is increasing need to address the same for nonlinear systems used in emerging applications for sensing and control. In this paper, a new approach for detecting errors in nonlinear digital filters is developed that does not require full duplication of all the nonlinear operations in the filter. First, a checksum of the linear least squares fit to the nonlinear function of the filter is derived that is ideally zero when the filter nonlinearities are not excited. Next, in residue prediction, linear predictive codes are used to predict the nonzero checksum error values that result exclusively from filter nonlinearity excitation. This allows fine granularity soft error detection at low hardware cost. Simulation experiments on a nonlinear Volterra filter prove the viability of the proposed concurrent error detection methodology.","PeriodicalId":413023,"journal":{"name":"2015 IEEE 21st International On-Line Testing Symposium (IOLTS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Concurrent error detection in nonlinear digital filters using checksum linearization and residue prediction\",\"authors\":\"Suvadeep Banerjee, Md Imran Momtaz, A. Chatterjee\",\"doi\":\"10.1109/IOLTS.2015.7229832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft errors due to alpha particles, neutrons and environmental noise are of increasing concern due to aggressive technology scaling. While prior work has focused mostly on error resilience of linear signal processing algorithms, there is increasing need to address the same for nonlinear systems used in emerging applications for sensing and control. In this paper, a new approach for detecting errors in nonlinear digital filters is developed that does not require full duplication of all the nonlinear operations in the filter. First, a checksum of the linear least squares fit to the nonlinear function of the filter is derived that is ideally zero when the filter nonlinearities are not excited. Next, in residue prediction, linear predictive codes are used to predict the nonzero checksum error values that result exclusively from filter nonlinearity excitation. This allows fine granularity soft error detection at low hardware cost. Simulation experiments on a nonlinear Volterra filter prove the viability of the proposed concurrent error detection methodology.\",\"PeriodicalId\":413023,\"journal\":{\"name\":\"2015 IEEE 21st International On-Line Testing Symposium (IOLTS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 21st International On-Line Testing Symposium (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2015.7229832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International On-Line Testing Symposium (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2015.7229832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于侵略性的技术缩放,由α粒子、中子和环境噪声引起的软误差越来越受到关注。虽然先前的工作主要集中在线性信号处理算法的错误恢复能力上,但在新兴的传感和控制应用中,越来越需要解决同样的非线性系统。本文提出了一种新的非线性数字滤波器误差检测方法,该方法不需要完全重复滤波器中的所有非线性运算。首先,推导出滤波器非线性函数的线性最小二乘拟合的校验和,该校验和在滤波器非线性未被激发时理想为零。接下来,在残差预测中,使用线性预测码来预测非零校验和错误值,这些错误值完全是由滤波器非线性激励引起的。这允许在低硬件成本下进行细粒度的软错误检测。在非线性Volterra滤波器上的仿真实验证明了所提出的并发误差检测方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent error detection in nonlinear digital filters using checksum linearization and residue prediction
Soft errors due to alpha particles, neutrons and environmental noise are of increasing concern due to aggressive technology scaling. While prior work has focused mostly on error resilience of linear signal processing algorithms, there is increasing need to address the same for nonlinear systems used in emerging applications for sensing and control. In this paper, a new approach for detecting errors in nonlinear digital filters is developed that does not require full duplication of all the nonlinear operations in the filter. First, a checksum of the linear least squares fit to the nonlinear function of the filter is derived that is ideally zero when the filter nonlinearities are not excited. Next, in residue prediction, linear predictive codes are used to predict the nonzero checksum error values that result exclusively from filter nonlinearity excitation. This allows fine granularity soft error detection at low hardware cost. Simulation experiments on a nonlinear Volterra filter prove the viability of the proposed concurrent error detection methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信