{"title":"基于传输门插入的时序误差弹性电路短路填充方法","authors":"Wentao Dai, Peiye Liu, Weiwei Shan","doi":"10.1145/3194554.3194600","DOIUrl":null,"url":null,"abstract":"Resilient circuits based on timing error detection and correction can mitigate the timing margin effectively, but usually at a cost of extra area overhead. One of the major sources of area overhead is short-path padding (hold time fix), which is much severer than in traditional IC design for near-threshold operation. Therefore, we propose an insertion methodology by using transmission gates to extend short-paths, which decreases area overhead than traditional resilient methods. Because the clock-controlled transmission gate (CTG) can extend all the short paths by half a clock when working as a transparent-low latch, the short-paths problem is solved. Besides, as the transmission gates synchronize the multiple short paths, it decreases the invalid flipping of combinational logic, which reduces the glitch power. Applied on a SHA-256 algorithm circuit in a 28nm CMOS process with 0.55V supply, the proposed technique reduces the area overhead a lot compared to the conventional short-path padding techniques. For combinational circuit, its area reduces from 153.34% to 4.43%, and for sequential circuit area, it reduces from 124.33% to 19.33%.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Short-path Padding Method for Timing Error Resilient Circuits based on Transmission Gates Insertion\",\"authors\":\"Wentao Dai, Peiye Liu, Weiwei Shan\",\"doi\":\"10.1145/3194554.3194600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resilient circuits based on timing error detection and correction can mitigate the timing margin effectively, but usually at a cost of extra area overhead. One of the major sources of area overhead is short-path padding (hold time fix), which is much severer than in traditional IC design for near-threshold operation. Therefore, we propose an insertion methodology by using transmission gates to extend short-paths, which decreases area overhead than traditional resilient methods. Because the clock-controlled transmission gate (CTG) can extend all the short paths by half a clock when working as a transparent-low latch, the short-paths problem is solved. Besides, as the transmission gates synchronize the multiple short paths, it decreases the invalid flipping of combinational logic, which reduces the glitch power. Applied on a SHA-256 algorithm circuit in a 28nm CMOS process with 0.55V supply, the proposed technique reduces the area overhead a lot compared to the conventional short-path padding techniques. For combinational circuit, its area reduces from 153.34% to 4.43%, and for sequential circuit area, it reduces from 124.33% to 19.33%.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-path Padding Method for Timing Error Resilient Circuits based on Transmission Gates Insertion
Resilient circuits based on timing error detection and correction can mitigate the timing margin effectively, but usually at a cost of extra area overhead. One of the major sources of area overhead is short-path padding (hold time fix), which is much severer than in traditional IC design for near-threshold operation. Therefore, we propose an insertion methodology by using transmission gates to extend short-paths, which decreases area overhead than traditional resilient methods. Because the clock-controlled transmission gate (CTG) can extend all the short paths by half a clock when working as a transparent-low latch, the short-paths problem is solved. Besides, as the transmission gates synchronize the multiple short paths, it decreases the invalid flipping of combinational logic, which reduces the glitch power. Applied on a SHA-256 algorithm circuit in a 28nm CMOS process with 0.55V supply, the proposed technique reduces the area overhead a lot compared to the conventional short-path padding techniques. For combinational circuit, its area reduces from 153.34% to 4.43%, and for sequential circuit area, it reduces from 124.33% to 19.33%.