体细胞拷贝数交替检测中完整等位基因信息的动态池化提取方法

ICBCB 2018 Pub Date : 2018-03-12 DOI:10.1145/3194480.3194482
Long Cheng, Pengfei Yao, Jianwei Lu, Ke Hao, Zhongyang Zhang
{"title":"体细胞拷贝数交替检测中完整等位基因信息的动态池化提取方法","authors":"Long Cheng, Pengfei Yao, Jianwei Lu, Ke Hao, Zhongyang Zhang","doi":"10.1145/3194480.3194482","DOIUrl":null,"url":null,"abstract":"Accurately characterizing somatic copy number alterations (SCNAs) in cancers are of great importance in both deciphering tumorigenesis and progression and improving clinical diagnosis/treatment. Many computational methods in detecting SCNAs were proposed in recent years, and saas-CNV is among the best performers evaluated with empirical datasets. However, saas-CNV method inefficiently uses the allele dosage information in next-generation sequencing or microarray data. To this regard, we proposed and implemented a novel approach to extract the complete allele signal information for SCNA detection. Evaluated in an empirical dataset of hepatocellular carcinoma, we demonstrated the novel approach enhanced data signal-to-noise ratio, and resulted in improved detection of copy number alternations especially focal genome changes.","PeriodicalId":240229,"journal":{"name":"ICBCB 2018","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Pooling Approach to Extract Complete Allele Signal Information in Somatic Copy Number Alternations Detection\",\"authors\":\"Long Cheng, Pengfei Yao, Jianwei Lu, Ke Hao, Zhongyang Zhang\",\"doi\":\"10.1145/3194480.3194482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately characterizing somatic copy number alterations (SCNAs) in cancers are of great importance in both deciphering tumorigenesis and progression and improving clinical diagnosis/treatment. Many computational methods in detecting SCNAs were proposed in recent years, and saas-CNV is among the best performers evaluated with empirical datasets. However, saas-CNV method inefficiently uses the allele dosage information in next-generation sequencing or microarray data. To this regard, we proposed and implemented a novel approach to extract the complete allele signal information for SCNA detection. Evaluated in an empirical dataset of hepatocellular carcinoma, we demonstrated the novel approach enhanced data signal-to-noise ratio, and resulted in improved detection of copy number alternations especially focal genome changes.\",\"PeriodicalId\":240229,\"journal\":{\"name\":\"ICBCB 2018\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICBCB 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194480.3194482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICBCB 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194480.3194482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确表征肿瘤的体细胞拷贝数改变(体细胞拷贝数改变,SCNAs)对于解释肿瘤的发生和发展以及改善临床诊断/治疗具有重要意义。近年来提出了许多用于检测scna的计算方法,其中saas-CNV是用经验数据集评估的性能最好的方法之一。然而,saas-CNV方法在下一代测序或微阵列数据中不能有效地利用等位基因剂量信息。为此,我们提出并实现了一种提取完整等位基因信号信息用于SCNA检测的新方法。在肝细胞癌的经验数据集中进行评估,我们证明了这种新方法提高了数据信噪比,并改善了拷贝数改变的检测,特别是局灶基因组变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Pooling Approach to Extract Complete Allele Signal Information in Somatic Copy Number Alternations Detection
Accurately characterizing somatic copy number alterations (SCNAs) in cancers are of great importance in both deciphering tumorigenesis and progression and improving clinical diagnosis/treatment. Many computational methods in detecting SCNAs were proposed in recent years, and saas-CNV is among the best performers evaluated with empirical datasets. However, saas-CNV method inefficiently uses the allele dosage information in next-generation sequencing or microarray data. To this regard, we proposed and implemented a novel approach to extract the complete allele signal information for SCNA detection. Evaluated in an empirical dataset of hepatocellular carcinoma, we demonstrated the novel approach enhanced data signal-to-noise ratio, and resulted in improved detection of copy number alternations especially focal genome changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信