云数据中心基础设施fpga的高效调度

Matteo Bertolino, R. Pacalet, L. Apvrille, Andrea Enrici
{"title":"云数据中心基础设施fpga的高效调度","authors":"Matteo Bertolino, R. Pacalet, L. Apvrille, Andrea Enrici","doi":"10.1109/DSD51259.2020.00021","DOIUrl":null,"url":null,"abstract":"In modern cloud data centers, reconfigurable devices can be directly connected to the network of a data center. This configuration enables FPGAs to be rented for acceleration of data-intensive workloads. In this context, novel scheduling solutions are needed to maximize the utilization (profitability) of FPGAs, e.g., reduce latency and resource fragmentation. Algorithms that schedule groups of tasks (clusters, packs), rather than individual tasks (list scheduling), well match the functioning of FPGAs. Here, groups of tasks that execute together are interposed by hardware reconfigurations. In this paper, we propose a heuristic based on a novel method for grouping tasks. These are gathered around a high-latency task that hides the latency of remaining tasks within the same group. We evaluated our solution on a benchmark of almost 30000 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 71.3% of the cases. It produces solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 88.1% of the cases.","PeriodicalId":128527,"journal":{"name":"2020 23rd Euromicro Conference on Digital System Design (DSD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient Scheduling of FPGAs for Cloud Data Center Infrastructures\",\"authors\":\"Matteo Bertolino, R. Pacalet, L. Apvrille, Andrea Enrici\",\"doi\":\"10.1109/DSD51259.2020.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern cloud data centers, reconfigurable devices can be directly connected to the network of a data center. This configuration enables FPGAs to be rented for acceleration of data-intensive workloads. In this context, novel scheduling solutions are needed to maximize the utilization (profitability) of FPGAs, e.g., reduce latency and resource fragmentation. Algorithms that schedule groups of tasks (clusters, packs), rather than individual tasks (list scheduling), well match the functioning of FPGAs. Here, groups of tasks that execute together are interposed by hardware reconfigurations. In this paper, we propose a heuristic based on a novel method for grouping tasks. These are gathered around a high-latency task that hides the latency of remaining tasks within the same group. We evaluated our solution on a benchmark of almost 30000 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 71.3% of the cases. It produces solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 88.1% of the cases.\",\"PeriodicalId\":128527,\"journal\":{\"name\":\"2020 23rd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 23rd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD51259.2020.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 23rd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD51259.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在现代云数据中心中,可重构设备可以直接连接到数据中心网络中。此配置允许租用fpga来加速数据密集型工作负载。在这种情况下,需要新的调度解决方案来最大限度地提高fpga的利用率(盈利能力),例如,减少延迟和资源碎片。调度任务组(集群,包)而不是单个任务(列表调度)的算法很好地匹配fpga的功能。在这里,一起执行的任务组通过硬件重新配置进行干预。本文提出了一种基于启发式的任务分组新方法。它们聚集在一个高延迟任务周围,该任务隐藏了同一组中其余任务的延迟。我们在近30000个随机工作负载的基准上评估了我们的解决方案,这些工作负载是由实际设计(即拓扑、资源占用)合成的。对于这个测试平台,平均而言,我们的启发式算法在71.3%的情况下产生最佳的makespan解决方案。在88.1%的情况下,它为适度约束的系统(即,最后期限落在最佳makespan的10%以内)产生解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Scheduling of FPGAs for Cloud Data Center Infrastructures
In modern cloud data centers, reconfigurable devices can be directly connected to the network of a data center. This configuration enables FPGAs to be rented for acceleration of data-intensive workloads. In this context, novel scheduling solutions are needed to maximize the utilization (profitability) of FPGAs, e.g., reduce latency and resource fragmentation. Algorithms that schedule groups of tasks (clusters, packs), rather than individual tasks (list scheduling), well match the functioning of FPGAs. Here, groups of tasks that execute together are interposed by hardware reconfigurations. In this paper, we propose a heuristic based on a novel method for grouping tasks. These are gathered around a high-latency task that hides the latency of remaining tasks within the same group. We evaluated our solution on a benchmark of almost 30000 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 71.3% of the cases. It produces solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 88.1% of the cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信