焊点的自动检测——神经网络方法

V. Sankaran, B. Chartrand, D.L.H. Lillard, M. Embrechts, R. Kraft
{"title":"焊点的自动检测——神经网络方法","authors":"V. Sankaran, B. Chartrand, D.L.H. Lillard, M. Embrechts, R. Kraft","doi":"10.1109/IEMT.1995.526120","DOIUrl":null,"url":null,"abstract":"This paper describes a PC-based system for automated inspection of solder joints using neural networks. It presents extensive application of neural networks to solder joint quality data in the form of visual images. Numerous methods for data compression and feature extraction have been applied to enhance the performance of the neural networks. Up to 92 per cent accuracy in identifying solder joint defects was achieved using visual images. This discussion deals with visible light images only but all techniques may be extended equally to X-ray laminographic images as preliminary results from such applications indicate.","PeriodicalId":123707,"journal":{"name":"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Automated inspection of solder joints-a neural network approach\",\"authors\":\"V. Sankaran, B. Chartrand, D.L.H. Lillard, M. Embrechts, R. Kraft\",\"doi\":\"10.1109/IEMT.1995.526120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a PC-based system for automated inspection of solder joints using neural networks. It presents extensive application of neural networks to solder joint quality data in the form of visual images. Numerous methods for data compression and feature extraction have been applied to enhance the performance of the neural networks. Up to 92 per cent accuracy in identifying solder joint defects was achieved using visual images. This discussion deals with visible light images only but all techniques may be extended equally to X-ray laminographic images as preliminary results from such applications indicate.\",\"PeriodicalId\":123707,\"journal\":{\"name\":\"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMT.1995.526120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventeenth IEEE/CPMT International Electronics Manufacturing Technology Symposium. 'Manufacturing Technologies - Present and Future'","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1995.526120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

介绍了一种基于pc机的基于神经网络的焊点自动检测系统。以视觉图像的形式将神经网络广泛应用于焊点质量数据。为了提高神经网络的性能,已经应用了大量的数据压缩和特征提取方法。使用视觉图像识别焊点缺陷的准确率高达92%。本讨论仅涉及可见光图像,但所有技术都可以同样扩展到x射线层析成像,这是这种应用的初步结果表明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated inspection of solder joints-a neural network approach
This paper describes a PC-based system for automated inspection of solder joints using neural networks. It presents extensive application of neural networks to solder joint quality data in the form of visual images. Numerous methods for data compression and feature extraction have been applied to enhance the performance of the neural networks. Up to 92 per cent accuracy in identifying solder joint defects was achieved using visual images. This discussion deals with visible light images only but all techniques may be extended equally to X-ray laminographic images as preliminary results from such applications indicate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信