智能电网需求侧管理优化的演化方法

A. R. F. Vidal, L. Jacobs, L. Batista
{"title":"智能电网需求侧管理优化的演化方法","authors":"A. R. F. Vidal, L. Jacobs, L. Batista","doi":"10.1109/CIASG.2014.7011561","DOIUrl":null,"url":null,"abstract":"An important function of a Smart Grid (SG) is the Demand Side Management (DSM), which consists on controlling loads at customers side, aiming to operate the system with major efficiency and sustainability. The main advantages of this technique are (i) the decrease of demand curve's peak, that results on smoother load profile and (ii) the reduction of both operational costs and the requirement of new investments in the system. The customer can save money by using loads on schedules with lower taxes instead of schedules with higher taxes. In this context, this work proposes a simple metaheuristic to solve the problem of DSM on smart grid. The suggested approach is based on the concept of day-ahead load shifting, which implies on the exchange of the use schedules planned for the next day and aims to obtain the lowest possible cost of energy. The demand management is modeled as an optimization problem whose solution is obtained by using an Evolutionary Algorithm (EA). The experimental tests are carried out considering a smart grid with three distinct demand areas, the first with residential clients, other one with commercial clients and a third one with industrial clients, all of them possessing a major number of controllable loads of diverse types. The obtained results were significant in all three areas, pointing substantial cost reductions for the customers, mainly on the industrial area.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"An evolutionary approach for the demand side management optimization in smart grid\",\"authors\":\"A. R. F. Vidal, L. Jacobs, L. Batista\",\"doi\":\"10.1109/CIASG.2014.7011561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important function of a Smart Grid (SG) is the Demand Side Management (DSM), which consists on controlling loads at customers side, aiming to operate the system with major efficiency and sustainability. The main advantages of this technique are (i) the decrease of demand curve's peak, that results on smoother load profile and (ii) the reduction of both operational costs and the requirement of new investments in the system. The customer can save money by using loads on schedules with lower taxes instead of schedules with higher taxes. In this context, this work proposes a simple metaheuristic to solve the problem of DSM on smart grid. The suggested approach is based on the concept of day-ahead load shifting, which implies on the exchange of the use schedules planned for the next day and aims to obtain the lowest possible cost of energy. The demand management is modeled as an optimization problem whose solution is obtained by using an Evolutionary Algorithm (EA). The experimental tests are carried out considering a smart grid with three distinct demand areas, the first with residential clients, other one with commercial clients and a third one with industrial clients, all of them possessing a major number of controllable loads of diverse types. The obtained results were significant in all three areas, pointing substantial cost reductions for the customers, mainly on the industrial area.\",\"PeriodicalId\":166543,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIASG.2014.7011561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

智能电网的一项重要功能是需求侧管理(DSM),它包括对客户端的负荷进行控制,旨在以高效和可持续的方式运行系统。该技术的主要优点是:(1)减少需求曲线的峰值,从而使负载剖面更平滑;(2)降低运行成本和对系统的新投资要求。客户可以通过使用低税收的时间表而不是高税收的时间表来节省资金。在此背景下,本工作提出了一种简单的元启发式方法来解决智能电网的需求侧管理问题。建议的方法是基于日前负荷转移的概念,这意味着交换第二天计划的使用时间表,目的是获得尽可能低的能源成本。将需求管理建模为一个优化问题,并采用进化算法求解。针对智能电网三个不同的需求区域进行了实验测试,第一是住宅用户,第二是商业用户,第三是工业用户,它们都拥有大量不同类型的可控负荷。所获得的结果在所有三个领域都是显著的,为客户指出了大量的成本降低,主要是在工业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evolutionary approach for the demand side management optimization in smart grid
An important function of a Smart Grid (SG) is the Demand Side Management (DSM), which consists on controlling loads at customers side, aiming to operate the system with major efficiency and sustainability. The main advantages of this technique are (i) the decrease of demand curve's peak, that results on smoother load profile and (ii) the reduction of both operational costs and the requirement of new investments in the system. The customer can save money by using loads on schedules with lower taxes instead of schedules with higher taxes. In this context, this work proposes a simple metaheuristic to solve the problem of DSM on smart grid. The suggested approach is based on the concept of day-ahead load shifting, which implies on the exchange of the use schedules planned for the next day and aims to obtain the lowest possible cost of energy. The demand management is modeled as an optimization problem whose solution is obtained by using an Evolutionary Algorithm (EA). The experimental tests are carried out considering a smart grid with three distinct demand areas, the first with residential clients, other one with commercial clients and a third one with industrial clients, all of them possessing a major number of controllable loads of diverse types. The obtained results were significant in all three areas, pointing substantial cost reductions for the customers, mainly on the industrial area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信