资源受限的自我感知网络物理系统(教程)

N. Taherinejad, Peter R. Lewis, A. Jantsch, A. Rahmani, Lukas Esterle
{"title":"资源受限的自我感知网络物理系统(教程)","authors":"N. Taherinejad, Peter R. Lewis, A. Jantsch, A. Rahmani, Lukas Esterle","doi":"10.1109/FAS-W.2019.00071","DOIUrl":null,"url":null,"abstract":"The overlap of the two established fields of cyber-physical systems and self-aware computing systems constitutes a challenging class of systems that require autonomy and must satisfy multiple, possibly conflicting constraints (e.g., performance, timeliness, energy, reliability). Self-aware cyber-physical systems are situated in dynamic physical environments and constrained in their resources, they understand their own state and that of their environment. Based on that understanding, they are able to make appropriate decisions autonomously at runtime with high efficiency. In this tutorial, we will review the state of the art of this exciting domain.","PeriodicalId":368308,"journal":{"name":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Constrained Self-Aware Cyber-Physical Systems (Tutorial)\",\"authors\":\"N. Taherinejad, Peter R. Lewis, A. Jantsch, A. Rahmani, Lukas Esterle\",\"doi\":\"10.1109/FAS-W.2019.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overlap of the two established fields of cyber-physical systems and self-aware computing systems constitutes a challenging class of systems that require autonomy and must satisfy multiple, possibly conflicting constraints (e.g., performance, timeliness, energy, reliability). Self-aware cyber-physical systems are situated in dynamic physical environments and constrained in their resources, they understand their own state and that of their environment. Based on that understanding, they are able to make appropriate decisions autonomously at runtime with high efficiency. In this tutorial, we will review the state of the art of this exciting domain.\",\"PeriodicalId\":368308,\"journal\":{\"name\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2019.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2019.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络物理系统和自我意识计算系统这两个已建立领域的重叠构成了一类具有挑战性的系统,这些系统需要自主性,必须满足多个可能相互冲突的约束(例如,性能、及时性、能源、可靠性)。自我意识的网络物理系统处于动态的物理环境中,受其资源的限制,它们了解自己的状态和环境的状态。基于这种理解,它们能够在运行时以高效率自主地做出适当的决策。在本教程中,我们将回顾这个令人兴奋的领域的艺术状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Constrained Self-Aware Cyber-Physical Systems (Tutorial)
The overlap of the two established fields of cyber-physical systems and self-aware computing systems constitutes a challenging class of systems that require autonomy and must satisfy multiple, possibly conflicting constraints (e.g., performance, timeliness, energy, reliability). Self-aware cyber-physical systems are situated in dynamic physical environments and constrained in their resources, they understand their own state and that of their environment. Based on that understanding, they are able to make appropriate decisions autonomously at runtime with high efficiency. In this tutorial, we will review the state of the art of this exciting domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信