具有吉布斯分布的高斯马尔可夫序列

V. N. Vasyukov, A.A. Spector
{"title":"具有吉布斯分布的高斯马尔可夫序列","authors":"V. N. Vasyukov, A.A. Spector","doi":"10.1109/KORUS.1999.875918","DOIUrl":null,"url":null,"abstract":"Stochastic models based on Gibbs distribution, well-known in statistical physics, remain scantily explored in information applications. This statement is of concern for the description of signals (messages, parasites), having a Gauss distribution. Therefore, the establishment of connections between Gibbs and traditional Markov expositions of signals is of interest, because it will allow us to combine the virtues of Gibbs and traditional expositions of Markov processes.","PeriodicalId":250552,"journal":{"name":"Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS'99 (Cat. No.99EX362)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauss Markov sequences with Gibbs distribution\",\"authors\":\"V. N. Vasyukov, A.A. Spector\",\"doi\":\"10.1109/KORUS.1999.875918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic models based on Gibbs distribution, well-known in statistical physics, remain scantily explored in information applications. This statement is of concern for the description of signals (messages, parasites), having a Gauss distribution. Therefore, the establishment of connections between Gibbs and traditional Markov expositions of signals is of interest, because it will allow us to combine the virtues of Gibbs and traditional expositions of Markov processes.\",\"PeriodicalId\":250552,\"journal\":{\"name\":\"Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS'99 (Cat. No.99EX362)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS'99 (Cat. No.99EX362)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KORUS.1999.875918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS'99 (Cat. No.99EX362)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KORUS.1999.875918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于吉布斯分布的随机模型在统计物理学中非常有名,但在信息应用方面的探索仍然很少。这一表述与描述具有高斯分布的信号(消息、寄生虫)有关。因此,在信号的吉布斯解释和传统马尔可夫解释之间建立联系是很有趣的,因为它将使我们能够将吉布斯解释和传统马尔可夫过程解释的优点结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauss Markov sequences with Gibbs distribution
Stochastic models based on Gibbs distribution, well-known in statistical physics, remain scantily explored in information applications. This statement is of concern for the description of signals (messages, parasites), having a Gauss distribution. Therefore, the establishment of connections between Gibbs and traditional Markov expositions of signals is of interest, because it will allow us to combine the virtues of Gibbs and traditional expositions of Markov processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信