电容器用尼龙-6基纳米复合薄膜

Amoghavarsha Mahadevegowda, C. Johnston, P. Grant
{"title":"电容器用尼龙-6基纳米复合薄膜","authors":"Amoghavarsha Mahadevegowda, C. Johnston, P. Grant","doi":"10.1109/NANO.2017.8117497","DOIUrl":null,"url":null,"abstract":"Nylon-6 and Al based nanocomposite films were fabricated via a scalable vacuum co-deposition technique. The relative deposition rates of the constituent phases — nylon-6 (matrix) and Al (filler) — were varied systematically to yield films of different compositions and their dielectric properties, particularly the measured dielectric constants k, were compared with predictions of effective medium expressions. The effect of absorbed water, temperature and heat treatment on k of the nano-films were studied. X-ray photoelectron spectroscopy revealed the presence of an Al-based oxide, which was correlated to the observed enhancement in the dielectric properties of the nanocomposites. The effect of the relative deposition rates of the constituent phases on k and the chemistry of the deposited films fabricated via co-deposition was studied and explained using X-ray photoelectron spectroscopy results.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nylon-6 based nanocomposite films for capacitor applications\",\"authors\":\"Amoghavarsha Mahadevegowda, C. Johnston, P. Grant\",\"doi\":\"10.1109/NANO.2017.8117497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nylon-6 and Al based nanocomposite films were fabricated via a scalable vacuum co-deposition technique. The relative deposition rates of the constituent phases — nylon-6 (matrix) and Al (filler) — were varied systematically to yield films of different compositions and their dielectric properties, particularly the measured dielectric constants k, were compared with predictions of effective medium expressions. The effect of absorbed water, temperature and heat treatment on k of the nano-films were studied. X-ray photoelectron spectroscopy revealed the presence of an Al-based oxide, which was correlated to the observed enhancement in the dielectric properties of the nanocomposites. The effect of the relative deposition rates of the constituent phases on k and the chemistry of the deposited films fabricated via co-deposition was studied and explained using X-ray photoelectron spectroscopy results.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用可扩展真空共沉积技术制备了尼龙-6和铝基纳米复合薄膜。系统地改变了组成相-尼龙-6(基体)和Al(填料)的相对沉积速率,以产生不同成分的薄膜,并将其介电性能,特别是测量的介电常数k与有效介质表达式的预测进行了比较。研究了吸收水分、温度和热处理对纳米膜k的影响。x射线光电子能谱显示了al基氧化物的存在,这与观察到的纳米复合材料介电性能的增强有关。利用x射线光电子能谱分析结果,研究了各组分相对沉积速率对k和共沉积膜化学性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nylon-6 based nanocomposite films for capacitor applications
Nylon-6 and Al based nanocomposite films were fabricated via a scalable vacuum co-deposition technique. The relative deposition rates of the constituent phases — nylon-6 (matrix) and Al (filler) — were varied systematically to yield films of different compositions and their dielectric properties, particularly the measured dielectric constants k, were compared with predictions of effective medium expressions. The effect of absorbed water, temperature and heat treatment on k of the nano-films were studied. X-ray photoelectron spectroscopy revealed the presence of an Al-based oxide, which was correlated to the observed enhancement in the dielectric properties of the nanocomposites. The effect of the relative deposition rates of the constituent phases on k and the chemistry of the deposited films fabricated via co-deposition was studied and explained using X-ray photoelectron spectroscopy results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信