信贷领域的算法歧视:我们对此了解多少?

IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ana Cristina Bicharra Garcia, Marcio Gomes Pinto Garcia, Roberto Rigobon
{"title":"信贷领域的算法歧视:我们对此了解多少?","authors":"Ana Cristina Bicharra Garcia,&nbsp;Marcio Gomes Pinto Garcia,&nbsp;Roberto Rigobon","doi":"10.1007/s00146-023-01676-3","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread usage of machine learning systems and econometric methods in the credit domain has transformed the decision-making process for evaluating loan applications. Automated analysis of credit applications diminishes the subjectivity of the decision-making process. On the other hand, since machine learning is based on past decisions recorded in the financial institutions’ datasets, the process very often consolidates existing bias and prejudice against groups defined by race, sex, sexual orientation, and other attributes. Therefore, the interest in identifying, preventing, and mitigating algorithmic discrimination has grown exponentially in many areas, such as Computer Science, Economics, Law, and Social Science. We conducted a comprehensive systematic literature review to understand (1) the research settings, including the discrimination theory foundation, the legal framework, and the applicable fairness metric; (2) the addressed issues and solutions; and (3) the open challenges for potential future research. We explored five sources: ACM Digital Library, Google Scholar, IEEE Digital Library, Springer Link, and Scopus. Following inclusion and exclusion criteria, we selected 78 papers written in English and published between 2017 and 2022. According to the meta-analysis of this literature survey, algorithmic discrimination has been addressed mainly by looking at the CS, Law, and Economics perspectives. There has been great interest in this topic in the financial area, especially the discrimination in providing access to the mortgage market and differential treatment (different fees, number of parcels, and interest rates). Most attention has been devoted to the potential discrimination due to bias in the dataset. Researchers are still only dealing with direct discrimination, addressed by algorithmic fairness, while indirect discrimination (structural discrimination) has not received the same attention.</p></div>","PeriodicalId":47165,"journal":{"name":"AI & Society","volume":"39 4","pages":"2059 - 2098"},"PeriodicalIF":2.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00146-023-01676-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Algorithmic discrimination in the credit domain: what do we know about it?\",\"authors\":\"Ana Cristina Bicharra Garcia,&nbsp;Marcio Gomes Pinto Garcia,&nbsp;Roberto Rigobon\",\"doi\":\"10.1007/s00146-023-01676-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread usage of machine learning systems and econometric methods in the credit domain has transformed the decision-making process for evaluating loan applications. Automated analysis of credit applications diminishes the subjectivity of the decision-making process. On the other hand, since machine learning is based on past decisions recorded in the financial institutions’ datasets, the process very often consolidates existing bias and prejudice against groups defined by race, sex, sexual orientation, and other attributes. Therefore, the interest in identifying, preventing, and mitigating algorithmic discrimination has grown exponentially in many areas, such as Computer Science, Economics, Law, and Social Science. We conducted a comprehensive systematic literature review to understand (1) the research settings, including the discrimination theory foundation, the legal framework, and the applicable fairness metric; (2) the addressed issues and solutions; and (3) the open challenges for potential future research. We explored five sources: ACM Digital Library, Google Scholar, IEEE Digital Library, Springer Link, and Scopus. Following inclusion and exclusion criteria, we selected 78 papers written in English and published between 2017 and 2022. According to the meta-analysis of this literature survey, algorithmic discrimination has been addressed mainly by looking at the CS, Law, and Economics perspectives. There has been great interest in this topic in the financial area, especially the discrimination in providing access to the mortgage market and differential treatment (different fees, number of parcels, and interest rates). Most attention has been devoted to the potential discrimination due to bias in the dataset. Researchers are still only dealing with direct discrimination, addressed by algorithmic fairness, while indirect discrimination (structural discrimination) has not received the same attention.</p></div>\",\"PeriodicalId\":47165,\"journal\":{\"name\":\"AI & Society\",\"volume\":\"39 4\",\"pages\":\"2059 - 2098\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00146-023-01676-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI & Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00146-023-01676-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI & Society","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s00146-023-01676-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习系统和计量经济学方法在信贷领域的广泛应用改变了评估贷款申请的决策过程。对信贷申请的自动分析减少了决策过程中的主观性。另一方面,由于机器学习是基于金融机构数据集中记录的过往决策,这一过程往往会巩固针对种族、性别、性取向和其他属性群体的现有偏见和成见。因此,计算机科学、经济学、法律和社会科学等许多领域对识别、预防和减轻算法歧视的兴趣成倍增长。我们进行了一次全面系统的文献综述,以了解:(1)研究背景,包括歧视理论基础、法律框架和适用的公平度量标准;(2)已解决的问题和解决方案;以及(3)未来研究可能面临的挑战。我们探索了五个来源:ACM 数字图书馆、Google Scholar、IEEE 数字图书馆、Springer Link 和 Scopus。根据纳入和排除标准,我们选取了 78 篇英文论文,这些论文发表于 2017 年至 2022 年之间。根据本次文献调查的荟萃分析,算法歧视问题主要从计算机科学、法律和经济学的角度进行探讨。金融领域对这一主题的关注度很高,尤其是在提供抵押贷款市场准入方面的歧视和差别待遇(不同的费用、包裹数量和利率)。大部分注意力都集中在数据集偏差导致的潜在歧视上。研究人员仍然只处理算法公平性所涉及的直接歧视,而间接歧视(结构性歧视)没有得到同样的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic discrimination in the credit domain: what do we know about it?

The widespread usage of machine learning systems and econometric methods in the credit domain has transformed the decision-making process for evaluating loan applications. Automated analysis of credit applications diminishes the subjectivity of the decision-making process. On the other hand, since machine learning is based on past decisions recorded in the financial institutions’ datasets, the process very often consolidates existing bias and prejudice against groups defined by race, sex, sexual orientation, and other attributes. Therefore, the interest in identifying, preventing, and mitigating algorithmic discrimination has grown exponentially in many areas, such as Computer Science, Economics, Law, and Social Science. We conducted a comprehensive systematic literature review to understand (1) the research settings, including the discrimination theory foundation, the legal framework, and the applicable fairness metric; (2) the addressed issues and solutions; and (3) the open challenges for potential future research. We explored five sources: ACM Digital Library, Google Scholar, IEEE Digital Library, Springer Link, and Scopus. Following inclusion and exclusion criteria, we selected 78 papers written in English and published between 2017 and 2022. According to the meta-analysis of this literature survey, algorithmic discrimination has been addressed mainly by looking at the CS, Law, and Economics perspectives. There has been great interest in this topic in the financial area, especially the discrimination in providing access to the mortgage market and differential treatment (different fees, number of parcels, and interest rates). Most attention has been devoted to the potential discrimination due to bias in the dataset. Researchers are still only dealing with direct discrimination, addressed by algorithmic fairness, while indirect discrimination (structural discrimination) has not received the same attention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI & Society
AI & Society COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
8.00
自引率
20.00%
发文量
257
期刊介绍: AI & Society: Knowledge, Culture and Communication, is an International Journal publishing refereed scholarly articles, position papers, debates, short communications, and reviews of books and other publications. Established in 1987, the Journal focuses on societal issues including the design, use, management, and policy of information, communications and new media technologies, with a particular emphasis on cultural, social, cognitive, economic, ethical, and philosophical implications. AI & Society has a broad scope and is strongly interdisciplinary. We welcome contributions and participation from researchers and practitioners in a variety of fields including information technologies, humanities, social sciences, arts and sciences. This includes broader societal and cultural impacts, for example on governance, security, sustainability, identity, inclusion, working life, corporate and community welfare, and well-being of people. Co-authored articles from diverse disciplines are encouraged. AI & Society seeks to promote an understanding of the potential, transformative impacts and critical consequences of pervasive technology for societies. Technological innovations, including new sciences such as biotech, nanotech and neuroscience, offer a great potential for societies, but also pose existential risk. Rooted in the human-centred tradition of science and technology, the Journal acts as a catalyst, promoter and facilitator of engagement with diversity of voices and over-the-horizon issues of arts, science, technology and society. AI & Society expects that, in keeping with the ethos of the journal, submissions should provide a substantial and explicit argument on the societal dimension of research, particularly the benefits, impacts and implications for society. This may include factors such as trust, biases, privacy, reliability, responsibility, and competence of AI systems. Such arguments should be validated by critical comment on current research in this area. Curmudgeon Corner will retain its opinionated ethos. The journal is in three parts: a) full length scholarly articles; b) strategic ideas, critical reviews and reflections; c) Student Forum is for emerging researchers and new voices to communicate their ongoing research to the wider academic community, mentored by the Journal Advisory Board; Book Reviews and News; Curmudgeon Corner for the opinionated. Papers in the Original Section may include original papers, which are underpinned by theoretical, methodological, conceptual or philosophical foundations. The Open Forum Section may include strategic ideas, critical reviews and potential implications for society of current research. Network Research Section papers make substantial contributions to theoretical and methodological foundations within societal domains. These will be multi-authored papers that include a summary of the contribution of each author to the paper. Original, Open Forum and Network papers are peer reviewed. The Student Forum Section may include theoretical, methodological, and application orientations of ongoing research including case studies, as well as, contextual action research experiences. Papers in this section are normally single-authored and are also formally reviewed. Curmudgeon Corner is a short opinionated column on trends in technology, arts, science and society, commenting emphatically on issues of concern to the research community and wider society. Normal word length: Original and Network Articles 10k, Open Forum 8k, Student Forum 6k, Curmudgeon 1k. The exception to the co-author limit of Original and Open Forum (4), Network (10), Student (3) and Curmudgeon (2) articles will be considered for their special contributions. Please do not send your submissions by email but use the "Submit manuscript" button. NOTE TO AUTHORS: The Journal expects its authors to include, in their submissions: a) An acknowledgement of the pre-accept/pre-publication versions of their manuscripts on non-commercial and academic sites. b) Images: obtain permissions from the copyright holder/original sources. c) Formal permission from their ethics committees when conducting studies with people.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信