N. Cimmino, G. Isoletta, R. Opromolla, G. Fasano, Marco Rigamonti, Moreno Peroni, Alessandro Panico, A. Cecchini, Aniello Basile, Ottavio Pesacane, A. Romano
{"title":"基于天文测量数据的地球轨道驻留空间物体表征","authors":"N. Cimmino, G. Isoletta, R. Opromolla, G. Fasano, Marco Rigamonti, Moreno Peroni, Alessandro Panico, A. Cecchini, Aniello Basile, Ottavio Pesacane, A. Romano","doi":"10.1109/MetroAeroSpace57412.2023.10189955","DOIUrl":null,"url":null,"abstract":"Due to the increasing number of Resident Space Objects, it becomes fundamental to characterize them. In particular, the ballistic coefficient and the effective ballistic coefficient play an important role for LEO and MEO/GEO objects. Current literature proposes several analytical or numerical approaches for estimating these parameters, depending on the type of input data. In this context, this paper investigates the application of a semi-analytical method for the characterization of both LEO and MEO/GEO objects. The presented approach is tested and discussed using open-source datasets. In both cases, ad-hoc metrics are used to assess the performance.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earth Orbiting Resident Space Objects Characterization based on Astrometric Data\",\"authors\":\"N. Cimmino, G. Isoletta, R. Opromolla, G. Fasano, Marco Rigamonti, Moreno Peroni, Alessandro Panico, A. Cecchini, Aniello Basile, Ottavio Pesacane, A. Romano\",\"doi\":\"10.1109/MetroAeroSpace57412.2023.10189955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing number of Resident Space Objects, it becomes fundamental to characterize them. In particular, the ballistic coefficient and the effective ballistic coefficient play an important role for LEO and MEO/GEO objects. Current literature proposes several analytical or numerical approaches for estimating these parameters, depending on the type of input data. In this context, this paper investigates the application of a semi-analytical method for the characterization of both LEO and MEO/GEO objects. The presented approach is tested and discussed using open-source datasets. In both cases, ad-hoc metrics are used to assess the performance.\",\"PeriodicalId\":153093,\"journal\":{\"name\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Earth Orbiting Resident Space Objects Characterization based on Astrometric Data
Due to the increasing number of Resident Space Objects, it becomes fundamental to characterize them. In particular, the ballistic coefficient and the effective ballistic coefficient play an important role for LEO and MEO/GEO objects. Current literature proposes several analytical or numerical approaches for estimating these parameters, depending on the type of input data. In this context, this paper investigates the application of a semi-analytical method for the characterization of both LEO and MEO/GEO objects. The presented approach is tested and discussed using open-source datasets. In both cases, ad-hoc metrics are used to assess the performance.