由基于web的可视化分析工具支持的学术表现分析

Ronak Etemadpour, Yongcheng Zhu, Qizhi Zhao, Yilun Hu, Bohan Chen, Mohammed Asif Sharier, Shirong Zheng, J. G. Paiva
{"title":"由基于web的可视化分析工具支持的学术表现分析","authors":"Ronak Etemadpour, Yongcheng Zhu, Qizhi Zhao, Yilun Hu, Bohan Chen, Mohammed Asif Sharier, Shirong Zheng, J. G. Paiva","doi":"10.1109/ICALT.2019.00059","DOIUrl":null,"url":null,"abstract":"Understanding the academic performance of students in colleges is an essential topic in Education research field. Educators, program coordinators and professors are interested in understanding how students are learning specific topics, how specific topics may influence the learning of other topics, how students' grades/attendances in each course may represent important indicators to measure their performance, among other tasks. In this paper, we present a visual analytic tool that combines data visualization and machine learning techniques to perform some visual analysis of students' data from program courses. Using this tool, we visually analyzed the students' performance in some Computer Science program courses, and demonstrated that the results of such analysis will help the education experts to understand deficiencies on course structures.","PeriodicalId":356549,"journal":{"name":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Academic Performance Analysis Supported by a Web-Based Visual Analytics Tool\",\"authors\":\"Ronak Etemadpour, Yongcheng Zhu, Qizhi Zhao, Yilun Hu, Bohan Chen, Mohammed Asif Sharier, Shirong Zheng, J. G. Paiva\",\"doi\":\"10.1109/ICALT.2019.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the academic performance of students in colleges is an essential topic in Education research field. Educators, program coordinators and professors are interested in understanding how students are learning specific topics, how specific topics may influence the learning of other topics, how students' grades/attendances in each course may represent important indicators to measure their performance, among other tasks. In this paper, we present a visual analytic tool that combines data visualization and machine learning techniques to perform some visual analysis of students' data from program courses. Using this tool, we visually analyzed the students' performance in some Computer Science program courses, and demonstrated that the results of such analysis will help the education experts to understand deficiencies on course structures.\",\"PeriodicalId\":356549,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2019.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解高校学生的学习成绩是教育研究领域的一个重要课题。教育工作者、项目协调员和教授感兴趣的是了解学生如何学习特定主题,特定主题如何影响其他主题的学习,学生在每门课程中的成绩/出勤率如何成为衡量其表现的重要指标,以及其他任务。在本文中,我们提出了一种可视化分析工具,该工具结合了数据可视化和机器学习技术,对来自程序课程的学生数据进行一些可视化分析。使用这个工具,我们直观地分析了学生在一些计算机科学项目课程中的表现,并证明了这种分析的结果将有助于教育专家了解课程结构的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Academic Performance Analysis Supported by a Web-Based Visual Analytics Tool
Understanding the academic performance of students in colleges is an essential topic in Education research field. Educators, program coordinators and professors are interested in understanding how students are learning specific topics, how specific topics may influence the learning of other topics, how students' grades/attendances in each course may represent important indicators to measure their performance, among other tasks. In this paper, we present a visual analytic tool that combines data visualization and machine learning techniques to perform some visual analysis of students' data from program courses. Using this tool, we visually analyzed the students' performance in some Computer Science program courses, and demonstrated that the results of such analysis will help the education experts to understand deficiencies on course structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信