基于长短期记忆的印尼语语音情感识别

Jeremia Jason Lasiman, D. Lestari
{"title":"基于长短期记忆的印尼语语音情感识别","authors":"Jeremia Jason Lasiman, D. Lestari","doi":"10.1109/IC3INA.2018.8629525","DOIUrl":null,"url":null,"abstract":"This paper presents an extended research of emotion recognition system for Indonesian language. In this research we use Indonesian Emotional Corpus with four emotions classes (anger, contentment, happiness, sadness) and neutral class. As all previous researches for emotion recognition for Indonesian language are using SVM, we are using SVM as baseline. Support Vector Machine (SVM), Feed Forward Neural Network (FFNN) and Long Short-Term Memory (LSTM) are experimented to model emotions. Experiment result shows that LSTM outperform SVM and FFNN. LSTM obtain 65.9% for average F1 measure with using acoustic and lexical feature, making it 5% higher than the best SVM in this experiment.","PeriodicalId":179466,"journal":{"name":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Speech Emotion Recognition for Indonesian Language Using Long Short-Term Memory\",\"authors\":\"Jeremia Jason Lasiman, D. Lestari\",\"doi\":\"10.1109/IC3INA.2018.8629525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extended research of emotion recognition system for Indonesian language. In this research we use Indonesian Emotional Corpus with four emotions classes (anger, contentment, happiness, sadness) and neutral class. As all previous researches for emotion recognition for Indonesian language are using SVM, we are using SVM as baseline. Support Vector Machine (SVM), Feed Forward Neural Network (FFNN) and Long Short-Term Memory (LSTM) are experimented to model emotions. Experiment result shows that LSTM outperform SVM and FFNN. LSTM obtain 65.9% for average F1 measure with using acoustic and lexical feature, making it 5% higher than the best SVM in this experiment.\",\"PeriodicalId\":179466,\"journal\":{\"name\":\"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3INA.2018.8629525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2018.8629525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文对印尼语情感识别系统进行了扩展研究。本研究使用印尼语情绪语料库,包含愤怒、满足、快乐、悲伤四种情绪类别和中性情绪类别。由于以往的印尼语情感识别研究都是使用支持向量机进行的,所以本文以支持向量机为基线。实验了支持向量机(SVM)、前馈神经网络(FFNN)和长短期记忆(LSTM)对情绪的建模。实验结果表明,LSTM优于支持向量机和FFNN。LSTM在使用声学和词汇特征的情况下获得了65.9%的平均F1测度,比本实验中最好的SVM高出5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Emotion Recognition for Indonesian Language Using Long Short-Term Memory
This paper presents an extended research of emotion recognition system for Indonesian language. In this research we use Indonesian Emotional Corpus with four emotions classes (anger, contentment, happiness, sadness) and neutral class. As all previous researches for emotion recognition for Indonesian language are using SVM, we are using SVM as baseline. Support Vector Machine (SVM), Feed Forward Neural Network (FFNN) and Long Short-Term Memory (LSTM) are experimented to model emotions. Experiment result shows that LSTM outperform SVM and FFNN. LSTM obtain 65.9% for average F1 measure with using acoustic and lexical feature, making it 5% higher than the best SVM in this experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信