从激光雷达和相机紧密耦合的速度和形状

Mohammad Hossein Daraei, Anh Vu, R. Manduchi
{"title":"从激光雷达和相机紧密耦合的速度和形状","authors":"Mohammad Hossein Daraei, Anh Vu, R. Manduchi","doi":"10.1109/IVS.2017.7995699","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-object tracking and reconstruction approach through measurement-level fusion of LiDAR and camera. The proposed method, regardless of object class, estimates 3D motion and structure for all rigid obstacles. Using an intermediate surface representation, measurements from both sensors are processed within a joint framework. We combine optical flow, surface reconstruction, and point-to-surface terms in a tightly-coupled non-linear energy function, which is minimized using Iterative Reweighted Least Squares (IRLS). We demonstrate the performance of our model on different datasets (KITTI with Velodyne HDL-64E and our collected data with 4-layer ScaLa Ibeo), and show an improvement in velocity error and crispness over state-of-the-art trackers.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Velocity and shape from tightly-coupled LiDAR and camera\",\"authors\":\"Mohammad Hossein Daraei, Anh Vu, R. Manduchi\",\"doi\":\"10.1109/IVS.2017.7995699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-object tracking and reconstruction approach through measurement-level fusion of LiDAR and camera. The proposed method, regardless of object class, estimates 3D motion and structure for all rigid obstacles. Using an intermediate surface representation, measurements from both sensors are processed within a joint framework. We combine optical flow, surface reconstruction, and point-to-surface terms in a tightly-coupled non-linear energy function, which is minimized using Iterative Reweighted Least Squares (IRLS). We demonstrate the performance of our model on different datasets (KITTI with Velodyne HDL-64E and our collected data with 4-layer ScaLa Ibeo), and show an improvement in velocity error and crispness over state-of-the-art trackers.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种基于激光雷达与相机测量级融合的多目标跟踪与重建方法。该方法在不考虑物体类别的情况下,对所有刚性障碍物的三维运动和结构进行估计。使用中间表面表示,两个传感器的测量结果在一个联合框架内进行处理。我们将光流,表面重建和点对面项结合在一个紧密耦合的非线性能量函数中,该函数使用迭代重加权最小二乘(IRLS)最小化。我们展示了我们的模型在不同数据集上的性能(使用Velodyne hd - 64e的KITTI和使用4层ScaLa Ibeo收集的数据),并显示了比最先进的跟踪器在速度误差和清晰度方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Velocity and shape from tightly-coupled LiDAR and camera
In this paper, we propose a multi-object tracking and reconstruction approach through measurement-level fusion of LiDAR and camera. The proposed method, regardless of object class, estimates 3D motion and structure for all rigid obstacles. Using an intermediate surface representation, measurements from both sensors are processed within a joint framework. We combine optical flow, surface reconstruction, and point-to-surface terms in a tightly-coupled non-linear energy function, which is minimized using Iterative Reweighted Least Squares (IRLS). We demonstrate the performance of our model on different datasets (KITTI with Velodyne HDL-64E and our collected data with 4-layer ScaLa Ibeo), and show an improvement in velocity error and crispness over state-of-the-art trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信