意见挖掘与主动学习:抽样策略的比较

Douglas Vitório, E. Souza, Adriano Oliveira
{"title":"意见挖掘与主动学习:抽样策略的比较","authors":"Douglas Vitório, E. Souza, Adriano Oliveira","doi":"10.5753/brasnam.2019.6549","DOIUrl":null,"url":null,"abstract":"There are two main problems when performing Opinion Mining (OM) with data streams: the lack of labeled data and the need to update the learning model. The most used OM techniques cannot deal well with these challenges, so, an alternative is to use semi-supervised methods, such as the Active Learning, which is a method to label only selected data rather than the entire data set; however, it requires the choice of a sampling strategy to select the data to be labeled. In this paper, we evaluated eight strategies in ten data sets, in order to identify the best ones for OM with Twitter streams. According to our experiments, the Entropy strategy showed the best results, but it selects a large number of instances to be labeled, requiring further investigation.","PeriodicalId":428504,"journal":{"name":"Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opinion Mining and Active Learning: a Comparison of Sampling Strategies\",\"authors\":\"Douglas Vitório, E. Souza, Adriano Oliveira\",\"doi\":\"10.5753/brasnam.2019.6549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two main problems when performing Opinion Mining (OM) with data streams: the lack of labeled data and the need to update the learning model. The most used OM techniques cannot deal well with these challenges, so, an alternative is to use semi-supervised methods, such as the Active Learning, which is a method to label only selected data rather than the entire data set; however, it requires the choice of a sampling strategy to select the data to be labeled. In this paper, we evaluated eight strategies in ten data sets, in order to identify the best ones for OM with Twitter streams. According to our experiments, the Entropy strategy showed the best results, but it selects a large number of instances to be labeled, requiring further investigation.\",\"PeriodicalId\":428504,\"journal\":{\"name\":\"Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/brasnam.2019.6549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/brasnam.2019.6549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用数据流执行意见挖掘(OM)时,存在两个主要问题:缺乏标记数据和需要更新学习模型。最常用的OM技术不能很好地应对这些挑战,因此,一种替代方法是使用半监督方法,例如主动学习,这是一种仅标记选定数据而不是整个数据集的方法;然而,它需要选择一种抽样策略来选择要标记的数据。在本文中,我们在10个数据集中评估了8种策略,以确定使用Twitter流进行OM的最佳策略。根据我们的实验,熵策略显示出最好的结果,但它选择了大量的实例来标记,需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opinion Mining and Active Learning: a Comparison of Sampling Strategies
There are two main problems when performing Opinion Mining (OM) with data streams: the lack of labeled data and the need to update the learning model. The most used OM techniques cannot deal well with these challenges, so, an alternative is to use semi-supervised methods, such as the Active Learning, which is a method to label only selected data rather than the entire data set; however, it requires the choice of a sampling strategy to select the data to be labeled. In this paper, we evaluated eight strategies in ten data sets, in order to identify the best ones for OM with Twitter streams. According to our experiments, the Entropy strategy showed the best results, but it selects a large number of instances to be labeled, requiring further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信