{"title":"德语语音自动识别:详细的错误分析","authors":"Johannes Wirth, R. Peinl","doi":"10.1109/COINS54846.2022.9854978","DOIUrl":null,"url":null,"abstract":"The amount of freely available systems for automatic speech recognition (ASR) based on neural networks is growing steadily, with equally increasingly reliable predictions. However, the evaluation of trained models is typically exclusively based on statistical metrics such as WER or CER, which do not provide any insight into the nature or impact of the errors produced when predicting transcripts from speech input. This work presents a selection of ASR model architectures that are pretrained on the German language and evaluates them on a benchmark of diverse test datasets. It identifies cross-architectural prediction errors, classifies those into categories and traces the sources of errors per category back into training data as well as other sources. Finally, it discusses solutions in order to create qualitatively better training datasets and more robust ASR systems.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Speech Recognition in German: A Detailed Error Analysis\",\"authors\":\"Johannes Wirth, R. Peinl\",\"doi\":\"10.1109/COINS54846.2022.9854978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of freely available systems for automatic speech recognition (ASR) based on neural networks is growing steadily, with equally increasingly reliable predictions. However, the evaluation of trained models is typically exclusively based on statistical metrics such as WER or CER, which do not provide any insight into the nature or impact of the errors produced when predicting transcripts from speech input. This work presents a selection of ASR model architectures that are pretrained on the German language and evaluates them on a benchmark of diverse test datasets. It identifies cross-architectural prediction errors, classifies those into categories and traces the sources of errors per category back into training data as well as other sources. Finally, it discusses solutions in order to create qualitatively better training datasets and more robust ASR systems.\",\"PeriodicalId\":187055,\"journal\":{\"name\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COINS54846.2022.9854978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9854978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Speech Recognition in German: A Detailed Error Analysis
The amount of freely available systems for automatic speech recognition (ASR) based on neural networks is growing steadily, with equally increasingly reliable predictions. However, the evaluation of trained models is typically exclusively based on statistical metrics such as WER or CER, which do not provide any insight into the nature or impact of the errors produced when predicting transcripts from speech input. This work presents a selection of ASR model architectures that are pretrained on the German language and evaluates them on a benchmark of diverse test datasets. It identifies cross-architectural prediction errors, classifies those into categories and traces the sources of errors per category back into training data as well as other sources. Finally, it discusses solutions in order to create qualitatively better training datasets and more robust ASR systems.