{"title":"建模扫描链修改扫描测试功率最小化","authors":"O. Sinanoglu, A. Orailoglu","doi":"10.1109/TEST.2003.1270887","DOIUrl":null,"url":null,"abstract":"Rapid and reliable test of SOCs necessitates upfront consideration of the test power issues. Special attention should be paid to scanbased cores as the test power problem is more severe due to excessive switching activity stemming from scan chain transitions during shift operations. We propose a scan chain modification methodology that transforms the stimuli to be inserted to the scan chain through logic gate insertion between scan cells, reducing scan chain transitions. We provide a mathematical analysis that helps model the impact of scan chain modifications on test stimuli transformations. Based on this analysis, we develop algorithms for transforming a set of test vectors into power-optimal test stimuli through cost-effective scan chain modifications. Even in the highly challenging case of fully specified test vectors, more than an order of magnitude reduction in scan-in power is attained by the proposed methodology, exceeding previous power reduction levels significantly.","PeriodicalId":236182,"journal":{"name":"International Test Conference, 2003. Proceedings. ITC 2003.","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Modeling scan chain modifications for scan-in test power minimization\",\"authors\":\"O. Sinanoglu, A. Orailoglu\",\"doi\":\"10.1109/TEST.2003.1270887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid and reliable test of SOCs necessitates upfront consideration of the test power issues. Special attention should be paid to scanbased cores as the test power problem is more severe due to excessive switching activity stemming from scan chain transitions during shift operations. We propose a scan chain modification methodology that transforms the stimuli to be inserted to the scan chain through logic gate insertion between scan cells, reducing scan chain transitions. We provide a mathematical analysis that helps model the impact of scan chain modifications on test stimuli transformations. Based on this analysis, we develop algorithms for transforming a set of test vectors into power-optimal test stimuli through cost-effective scan chain modifications. Even in the highly challenging case of fully specified test vectors, more than an order of magnitude reduction in scan-in power is attained by the proposed methodology, exceeding previous power reduction levels significantly.\",\"PeriodicalId\":236182,\"journal\":{\"name\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2003.1270887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Test Conference, 2003. Proceedings. ITC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2003.1270887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling scan chain modifications for scan-in test power minimization
Rapid and reliable test of SOCs necessitates upfront consideration of the test power issues. Special attention should be paid to scanbased cores as the test power problem is more severe due to excessive switching activity stemming from scan chain transitions during shift operations. We propose a scan chain modification methodology that transforms the stimuli to be inserted to the scan chain through logic gate insertion between scan cells, reducing scan chain transitions. We provide a mathematical analysis that helps model the impact of scan chain modifications on test stimuli transformations. Based on this analysis, we develop algorithms for transforming a set of test vectors into power-optimal test stimuli through cost-effective scan chain modifications. Even in the highly challenging case of fully specified test vectors, more than an order of magnitude reduction in scan-in power is attained by the proposed methodology, exceeding previous power reduction levels significantly.