{"title":"基于双平台步进/扫描仪的叠加评价方法","authors":"P. Kulse, S. Jätzlau, K. Schulz, M. Wietstruck","doi":"10.1117/12.2535629","DOIUrl":null,"url":null,"abstract":"In this work we address the capability of an alternative overlay evaluation method for the entire BEOL-Process of IHP’s standard 0.25 and 0.13 μm SiGe:C BiCMOS technology. A dual lithography platform NIKON® NSR 210D/207D scanners and NIKON® NSR SF-150 i-Line stepper layer crossing and wafer bow related overlay issues will be discussed. Stack alignment marks, which serves the exposure alignment and overlay determination were introduced. A mismatch for overlay (x/y) |mean| + 3σ values below 8 nm between the KLA® ARCHER 100 overlay and both lithography tools could be demonstrated.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual platform stepper/scanner-based overlay evaluation method\",\"authors\":\"P. Kulse, S. Jätzlau, K. Schulz, M. Wietstruck\",\"doi\":\"10.1117/12.2535629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we address the capability of an alternative overlay evaluation method for the entire BEOL-Process of IHP’s standard 0.25 and 0.13 μm SiGe:C BiCMOS technology. A dual lithography platform NIKON® NSR 210D/207D scanners and NIKON® NSR SF-150 i-Line stepper layer crossing and wafer bow related overlay issues will be discussed. Stack alignment marks, which serves the exposure alignment and overlay determination were introduced. A mismatch for overlay (x/y) |mean| + 3σ values below 8 nm between the KLA® ARCHER 100 overlay and both lithography tools could be demonstrated.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2535629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work we address the capability of an alternative overlay evaluation method for the entire BEOL-Process of IHP’s standard 0.25 and 0.13 μm SiGe:C BiCMOS technology. A dual lithography platform NIKON® NSR 210D/207D scanners and NIKON® NSR SF-150 i-Line stepper layer crossing and wafer bow related overlay issues will be discussed. Stack alignment marks, which serves the exposure alignment and overlay determination were introduced. A mismatch for overlay (x/y) |mean| + 3σ values below 8 nm between the KLA® ARCHER 100 overlay and both lithography tools could be demonstrated.