{"title":"基于深度CNN的呼吸系统疾病x射线图像多重分类","authors":"S. Varalakshmi, V. P, R. V","doi":"10.1109/ICPECTS56089.2022.10047331","DOIUrl":null,"url":null,"abstract":"COVID-19 debuted in Wuhan, China on December 19, 2019. In a brief period, deadly virus now migrated to practically every country. To avoid the causative agent COVID-19 disease, governments implement a number of strict restrictions, notably prohibiting people from leaving their homes. This paper focused on detecting and classifying disease such as viral pneu-monia, covidand normal from x-ray images using deep learning methods along with pre-trained models. Moreover, validation accuracy of CNN model attained around 91 % while performing layers in neural network. Several investigations examined that identifying disease of covid reached more accuracy around 98% with hybrid and other algorithms without removing noise from particular images. But this work mainly focused on normalizing images to make the computation very efficient, convergence faster too.","PeriodicalId":103068,"journal":{"name":"2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep CNN based Multi Classification of Respiratory Disease using X-Ray Images\",\"authors\":\"S. Varalakshmi, V. P, R. V\",\"doi\":\"10.1109/ICPECTS56089.2022.10047331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 debuted in Wuhan, China on December 19, 2019. In a brief period, deadly virus now migrated to practically every country. To avoid the causative agent COVID-19 disease, governments implement a number of strict restrictions, notably prohibiting people from leaving their homes. This paper focused on detecting and classifying disease such as viral pneu-monia, covidand normal from x-ray images using deep learning methods along with pre-trained models. Moreover, validation accuracy of CNN model attained around 91 % while performing layers in neural network. Several investigations examined that identifying disease of covid reached more accuracy around 98% with hybrid and other algorithms without removing noise from particular images. But this work mainly focused on normalizing images to make the computation very efficient, convergence faster too.\",\"PeriodicalId\":103068,\"journal\":{\"name\":\"2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECTS56089.2022.10047331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECTS56089.2022.10047331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep CNN based Multi Classification of Respiratory Disease using X-Ray Images
COVID-19 debuted in Wuhan, China on December 19, 2019. In a brief period, deadly virus now migrated to practically every country. To avoid the causative agent COVID-19 disease, governments implement a number of strict restrictions, notably prohibiting people from leaving their homes. This paper focused on detecting and classifying disease such as viral pneu-monia, covidand normal from x-ray images using deep learning methods along with pre-trained models. Moreover, validation accuracy of CNN model attained around 91 % while performing layers in neural network. Several investigations examined that identifying disease of covid reached more accuracy around 98% with hybrid and other algorithms without removing noise from particular images. But this work mainly focused on normalizing images to make the computation very efficient, convergence faster too.