{"title":"基于PBG结构的小贴片天线在不同无线应用中的带宽增强","authors":"H. Abutarboush, H. Al-Raweshidy, R. Nilavalan","doi":"10.1109/IWAT.2009.4906897","DOIUrl":null,"url":null,"abstract":"A design strategy using Photonic Band Gap (PBG) structure on ground plane to achieve wider bandwidth for patch antenna is presented. It is found that, the impedance bandwidth has improved from 3.72% to 31.9 % at centre frequency 9 GHz after adding PBG on the ground plane. The antenna has multi band operations at 5, 6 and 9 GHz. E-Plane and H-plane radiation patter is satisfied within this bands.","PeriodicalId":166472,"journal":{"name":"2009 IEEE International Workshop on Antenna Technology","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bandwidth enhancement for small patch antenna using PBG structure for different wireless applications\",\"authors\":\"H. Abutarboush, H. Al-Raweshidy, R. Nilavalan\",\"doi\":\"10.1109/IWAT.2009.4906897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design strategy using Photonic Band Gap (PBG) structure on ground plane to achieve wider bandwidth for patch antenna is presented. It is found that, the impedance bandwidth has improved from 3.72% to 31.9 % at centre frequency 9 GHz after adding PBG on the ground plane. The antenna has multi band operations at 5, 6 and 9 GHz. E-Plane and H-plane radiation patter is satisfied within this bands.\",\"PeriodicalId\":166472,\"journal\":{\"name\":\"2009 IEEE International Workshop on Antenna Technology\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Antenna Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2009.4906897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Antenna Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2009.4906897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bandwidth enhancement for small patch antenna using PBG structure for different wireless applications
A design strategy using Photonic Band Gap (PBG) structure on ground plane to achieve wider bandwidth for patch antenna is presented. It is found that, the impedance bandwidth has improved from 3.72% to 31.9 % at centre frequency 9 GHz after adding PBG on the ground plane. The antenna has multi band operations at 5, 6 and 9 GHz. E-Plane and H-plane radiation patter is satisfied within this bands.