综合模型在建筑行业节能评价中的应用

O. Olanrewaju
{"title":"综合模型在建筑行业节能评价中的应用","authors":"O. Olanrewaju","doi":"10.7166/32-2-2321","DOIUrl":null,"url":null,"abstract":"The activities of the building and construction industry have made it one of the highest energy consumers and thus one of the highest emitters of greenhouse gases. The main objective of this study was to develop a system to determine energy saving in the industry. This was achieved through an integrated model of index decomposition analysis, an artificial neural network, and data envelopment analysis. Index decomposition analysis is used to understand the contribution of the factors responsible for energy consumption. These factors are inputs to the artificial neural network to predict the baseline energy consumption. The energy saving is finally determined through data envelopment analysis. The results showed that the integrated model presents a reasonable amount of energy saving in the building and construction industry.","PeriodicalId":404746,"journal":{"name":"The South African Journal of Industrial Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"APPLICATION OF AN INTEGRATED MODEL TO A CONSTRUCTION AND BUILDING INDUSTRY FOR ENERGY- SAVING ASSESSMENT\",\"authors\":\"O. Olanrewaju\",\"doi\":\"10.7166/32-2-2321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activities of the building and construction industry have made it one of the highest energy consumers and thus one of the highest emitters of greenhouse gases. The main objective of this study was to develop a system to determine energy saving in the industry. This was achieved through an integrated model of index decomposition analysis, an artificial neural network, and data envelopment analysis. Index decomposition analysis is used to understand the contribution of the factors responsible for energy consumption. These factors are inputs to the artificial neural network to predict the baseline energy consumption. The energy saving is finally determined through data envelopment analysis. The results showed that the integrated model presents a reasonable amount of energy saving in the building and construction industry.\",\"PeriodicalId\":404746,\"journal\":{\"name\":\"The South African Journal of Industrial Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The South African Journal of Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7166/32-2-2321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The South African Journal of Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7166/32-2-2321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

建筑行业的活动使其成为能源消耗最高的国家之一,因此也是温室气体排放最高的国家之一。本研究的主要目的是开发一个系统来确定该行业的节能情况。这是通过指数分解分析、人工神经网络和数据包络分析的综合模型实现的。利用指数分解分析来了解各因素对能源消耗的贡献。这些因素作为人工神经网络预测基线能耗的输入。通过数据包络分析,最终确定节能效果。结果表明,该综合模型能较好地体现建筑行业的节能效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPLICATION OF AN INTEGRATED MODEL TO A CONSTRUCTION AND BUILDING INDUSTRY FOR ENERGY- SAVING ASSESSMENT
The activities of the building and construction industry have made it one of the highest energy consumers and thus one of the highest emitters of greenhouse gases. The main objective of this study was to develop a system to determine energy saving in the industry. This was achieved through an integrated model of index decomposition analysis, an artificial neural network, and data envelopment analysis. Index decomposition analysis is used to understand the contribution of the factors responsible for energy consumption. These factors are inputs to the artificial neural network to predict the baseline energy consumption. The energy saving is finally determined through data envelopment analysis. The results showed that the integrated model presents a reasonable amount of energy saving in the building and construction industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信