基于能量和面积高效隧道场效应的脉冲神经网络

Dinesh Rajasekharan, S. S. Chauhan, A. Trivedi, Y. Chauhan
{"title":"基于能量和面积高效隧道场效应的脉冲神经网络","authors":"Dinesh Rajasekharan, S. S. Chauhan, A. Trivedi, Y. Chauhan","doi":"10.1109/EDTM.2018.8421527","DOIUrl":null,"url":null,"abstract":"Exploiting the Tunnel FET (TFET) properties such as unidirectional conduction and asymmetric drain and source, we propose for the first time a novel TFET-based circuit design mechanism for spike timing dependent plasticity process. In the proposed circuit, we are able to reduce the transistor count by half, making the circuit more area and energy efficient. A neuron receiving input from ten synapses, containing the proposed learning circuit, was simulated and it operated with reduced area and energy consumption compared to the MOSFET-based implementation.","PeriodicalId":418495,"journal":{"name":"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy and Area Efficient Tunnel FET-based Spiking Neural Networks\",\"authors\":\"Dinesh Rajasekharan, S. S. Chauhan, A. Trivedi, Y. Chauhan\",\"doi\":\"10.1109/EDTM.2018.8421527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting the Tunnel FET (TFET) properties such as unidirectional conduction and asymmetric drain and source, we propose for the first time a novel TFET-based circuit design mechanism for spike timing dependent plasticity process. In the proposed circuit, we are able to reduce the transistor count by half, making the circuit more area and energy efficient. A neuron receiving input from ten synapses, containing the proposed learning circuit, was simulated and it operated with reduced area and energy consumption compared to the MOSFET-based implementation.\",\"PeriodicalId\":418495,\"journal\":{\"name\":\"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM.2018.8421527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM.2018.8421527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用隧道场效应晶体管(TFET)的单向传导和源极漏极不对称等特性,首次提出了一种新的基于TFET的脉冲时序相关塑性过程电路设计机制。在提出的电路中,我们能够将晶体管数量减少一半,使电路的面积和能源效率更高。模拟了一个神经元接收来自10个突触的输入,其中包含了所提出的学习电路,与基于mosfet的实现相比,它的运行面积和能量消耗都减少了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and Area Efficient Tunnel FET-based Spiking Neural Networks
Exploiting the Tunnel FET (TFET) properties such as unidirectional conduction and asymmetric drain and source, we propose for the first time a novel TFET-based circuit design mechanism for spike timing dependent plasticity process. In the proposed circuit, we are able to reduce the transistor count by half, making the circuit more area and energy efficient. A neuron receiving input from ten synapses, containing the proposed learning circuit, was simulated and it operated with reduced area and energy consumption compared to the MOSFET-based implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信